

Risk of Amazonian Drying in the 21st Century

Prof. Peter Cox & Dr Tim Jupp

Mathematics Research Institute University of Exeter

Project Motivation

What is the risk of "dieback" of the Amazon Rainforest due to climate change ?

Predicted Change i Vegetation Cover in the Hadley Centre Climate-Carbon Model

Big Differences in Climate Predictions of Rainfall Change (mm/day) over Amazonia !

How do we decide which is right?

Answer : we use observations to "weight" different model predictions...

University of Exeter's Role

Estimating the Probability Density Function for Future Rainfall in the Amazon

Plans to define a "Probability Density Function" for Future Amazon Rainfall

Example of PDF for Climate Sensitivity (Murphy et al. 2004)

Plans to define a PDF for future Amazon Rainfall

• Use a Bayesian Approach:

P (model given data) ~ P (data given model) * P (model)

Posterior PDF for future Amazon Rainfall Weighting Factors Based on model Fit to observational data *Prior PDF for future Amazon Rainfall*

• Will use results from the 20 GCMs which have reported appropriate data in the IPCC AR4 archive.

• Will involve defining "Amazon Climate Prediction Indices (ACPI)", to weight different model predictions based on current day simulation

Defining Weighting Factors for the Models

- Will use observed climate variability to define relationships between patterns of tropical sea-surface temperatures and Amazon rainfall.
- Will encapsulate the role of sea-surface temperatures in the tropical Pacific (e.g. the reduction in rainfall in parts of Amazonia during *El Nino*).
- Will encapsulate the role of sea-surface temperatures in the tropical Atlantic (e.g. the 2005 drought).

Amazonian Drought of July-October 2005

Warming of Tropical North Atlantic Ocean Relative to the South

Are 2005-like Amazonian droughts set to become much more frequent ?

nature Vol 453|8 May 2008|doi:10.1038/nature06960

Increasing risk of Amazonian drought due to decreasing aerosol pollution

Peter M. Cox^{1,2}, Phil P. Harris³, Chris Huntingford³, Richard A. Betts², Matthew Collins², Chris D. Jones², Tim E. Jupp¹, José A. Marengo⁴ & Carlos A. Nobre⁴

The Big Picture

Minimising the risk of Amazonian dieback under the combined pressures of Deforestation and Climate Change

Rainfall

Schematic Showing Vulnerability of Amazon Rainforest Climate Change and Deforestation

Conclusions

- The Amazon rainforest is currently suffering multiple pressures, most notably from deforestation and climate change.
- Even in the absence of deforestation, some climate projections indicate a risk of climate change-driven rainforest dieback (especially under scenarios of increased greenhouse gases and reduced sulphate aerosol pollution).
 - However, there is a large divergence amongst climate model projections for the Amazon basin.
 - Exeter University's role is to estimate the likelihood of different degrees of rainfall change by using observations to weight the full range of model projections.

THE END !

Project Inputs and Outputs

ETER

