



# Integrating Urban Climate Guidelines through Clean Technologies (RE & EE) at the State and City Level to build Sustainable Low Carbon Cities

Tamil Nadu State's Project Cities GHG Emission Inventory, Energy Consumption Profile & City Specific Low Carbon Action Plans

**March 2013** 

### **Notes to the Readers**

This report is an output of the Project titled "Integrating Urban Climate Guidelines through Clean Technologies (RE & EE) at the State and City level to build Sustainable Low Carbon Cities" prepared by ICLEI South Asia with support from British High Commission. The Report provides the brief city profile, energy consumption status, sectoral GHGs emission inventory, suggested sectoral low carbon implementable actions for project cities namely Coimbatore, Tiruchirapalli and Tirunelveli from Tamil Nadu State. The report also highlights the techno economic feasibility of each suggested low carbon actions. Beneficiaries' contributions and available subsidies are also discussed for each low carbon actions.

Comments and suggestions are welcome and could be sent to ICLEI South Asia at iclei-southasia@iclei.org

### **ICLEI South Asia Team**

Emani Kumar Ravi Ranjan Guru Kavita Singh Ashish Verma Ali Adil Keshav Jha

### **Advisory Committee**

Mr. Ajit Gupta, former Advisor, Ministry of New and Renewable Energy Dr. Minal Pathak, Professor, Faculty of Sustainable Environment and Climate Change, CEPT University

All rights reserved © ICLEI Version 2 @ March 2013

### Preface

Climate change is a global concern and it's an evident fact that Indian cities in particular are vulnerable to its impacts. As engines of economic growth, cities in India are burgeoning in size due to urbanization and population growth, inevitably becoming consumers of a wide range of resources. As cities grow in size and population, the demand for basic resources and civic services like modern energy, transport, communications and financial services etc grow in parallel. The industrialization that accompanies this demand causes increasing Carbon emissions which eventually make the very engines of the Indian economy vulnerable to threats arising due to Climate change. Realization that cities are where the mitigative and adaptive initiatives against climate change have the highest potential makes the action initiated at local levels crucial. Hence, the urgent need to address climate change is in fact a corollary to sustainable economic growth.

A low Carbon economy presents a sustainable perspective to economic growth and propels innovation and productivity. In order that interventions which facilitate adoption of a low Carbon model of growth and development are considered, the prevailing condition in terms of energy usage and resource consumption needs a comprehensive assessment at the city level. The appraisal of the patterns of energy and resource consumption at a city level helps identify the areas where low Carbon development can have the highest impact while leveraging the policies outlined by the local government.

This report informs both the policy makers and local governments about the current patterns of consumption of energy and resources in the project cities and the line of action that would avail the best results when implemented at the local level. The report highlights the prevailing scenario and suggests local government actions that offer the best mitigative and adaptive results against Climate change and low Carbon development as a result.

## Acknowledgement

ICLEI South Asia and the British High Commission wish to thank the following organizations and their utilities for their cooperation in providing the information that made this publication possible.

- Coimbatore District Small Industries Association
- Indian Chamber of Commerce and Industry
- District Industries Center
- Indian Statistical Institute
- District Supply Office
- State Energy Department
- State Forest Department
- Bharat Petroleum Corporation limited
- Indian Oil Corporation limited
- Hindustan Petroleum Corporation limited

# Acronyms and abbreviation

| WRI      | World Resources Institute                               |  |  |
|----------|---------------------------------------------------------|--|--|
| WBCSD    | World Business Council for Sustainable Development      |  |  |
| MMTCDE   | Million Metric Tonnes of Carbon Dioxide Equivalents     |  |  |
| MSTCDE   | Million Short Tonnes of Carbon Dioxide Equivalents      |  |  |
| ULB      | Urban Local Body                                        |  |  |
| CDP      | City Development Plan                                   |  |  |
| CODISSIA | Coimbatore District Small Industries Association        |  |  |
| IPCC     | Intergovernmental Panel on Climate Change               |  |  |
| IEAP     | International Local Government Greenhouse Gas Emissions |  |  |
|          | Analysis Protocol                                       |  |  |
| GSDP     | Gross State Domestic Product                            |  |  |
| BHEL     | Bharat Heavy Electricals Limited                        |  |  |
| NLC      | Neyveli Lignite Corporation Limited                     |  |  |
| NTPC     | National Thermal Power Corporation                      |  |  |
| RGGVY    | Rajiv Gandhi Gramin Vikas Yojna                         |  |  |
| DMS      | Demand Side Management                                  |  |  |
| SEZ      | Special Economic Zone                                   |  |  |
| Lpcd     | Liters per capita per day                               |  |  |
| TPD      | Tons per day                                            |  |  |
| MLD      | Million Liters per day                                  |  |  |
| STP      | Sewerage Treatment Plant                                |  |  |
| NH       | National Highway                                        |  |  |
| UGD      | Underground Drainage                                    |  |  |
| MT       | Metric Tonnes                                           |  |  |
| TNEB     | Tamil Nadu Electricity Board                            |  |  |
| IOLC     | Indian Oil Corporation Limited                          |  |  |
| HPCL     | Hindustan Petroleum Corporation Limited                 |  |  |
| SLB      | Service Level Benchmarking                              |  |  |
| LPG      | Liquid Petroleum Gas                                    |  |  |
| SAPCC    | State Action Plan on Climate Change                     |  |  |
| BEE      | Bureau of Energy Efficiency                             |  |  |
| IMD      | India Meteorological Department                         |  |  |
| INCCA    | Indian Network for Climate Change Assessment            |  |  |
| MU       | Million Units                                           |  |  |
| Mt       | Million tons                                            |  |  |
| CAGR     | Compounded Annual Growth Rate                           |  |  |
| NTPC     | National Thermal Power Corporation                      |  |  |

### TABLE OF CONTENTS

| Pre              | face                                                     | 1               |
|------------------|----------------------------------------------------------|-----------------|
| Acl              | snowledgement                                            | 2               |
| Acr              | conyms and abbreviation                                  | 3               |
| Exe              | ecutive Summary                                          | 5               |
| <b>1.</b><br>1.1 | About the Project<br>Project Activities & Outputs        | <b>6</b><br>6   |
| 2.               | Methodology                                              | 8               |
| 2.1              | Project Boundaries                                       | 8               |
| 2.2              | Methodology Followed                                     | 9               |
| 2.3              | Data Collection                                          | 11              |
| 2.4              | Tool Used                                                | 13              |
| 2.5              | How HEAT PLUS Calculates Emissions?                      | 18              |
| 3                | Tamil Nadu Stata Profile                                 | 10              |
| 3.1              | Details of Location, Geography and Climate of Tamil Nadu | 19              |
| 3.2              | Administrative profile                                   | 21              |
| 3.3              | State Economy profile of Tamil Nadu                      | 21              |
| 3.4              | Demographic trends                                       | 23              |
| 3.5              | Ecological and Forest profile                            | 23              |
| 3.6              | Energy profile of Tamil Nadu State                       | 24              |
| 3.7              | Actions at State level                                   | 24              |
| 4                | Coimbatore City                                          | 26              |
| 41               | City Profile                                             | 26              |
| 4.2              | Energy Consumption Profile of Coimbatore                 | 31              |
| 4.3              | GHG Emissions profile of Coimbatore                      | 38              |
| 4.4              | Suggested Low Carbon Action plans                        | 41              |
| 5                | Tiruchiranalli City                                      | 79              |
| 5.1              | City Profile                                             | 79              |
| 5.2              | Energy Consumption Profile of Tiruchirapalli             | 84              |
| 5.3              | GHG Emissions Inventory of Tiruchirapalli                | 86              |
| 5.4              | Suggested Low Carbon Action Plans                        | 89              |
| 6                | Tirunelveli City 1                                       | 15              |
| 6.1              | City Profile 1                                           | 15              |
| 6.2              | Energy Profile                                           | $\frac{10}{20}$ |
| 6.3              | GHG Emissions Inventory of Tirunelveli                   | $\frac{-0}{23}$ |
| 6.4              | Suggested Low Carbon action plans1                       | 26              |
| 7.               | Conclusion                                               | 53              |

### **Executive Summary**

Climate change concern is global and requires a global plan of action for resilience against its imminent impacts. International negotiations have increasingly been driven towards the need for global confluence of climate change adaptation and mitigation strategies that provide tailor-made solutions to individual nations especially to those in South Asia and Africa where the repercussions of climate change, in absence of robust infrastructure and institutions, are expected to be adverse. Cities and local communities is where the 'rubber hits the road' for climate change mitigation and GHG emissions abatement. Cities are also where the impacts of rapid urbanization, infrastructural and institutional inadequacies are rampant and are already increasing the pressure on local governments for sustainable urban living and development. Conflicting demands which are seemingly hard to satisfy are increasing in parallel to a global call for change in a direction that guides us to a sustainable and preferably low Carbon future.

This Project titled 'Integrating Urban Climate Guidelines through Clean Technologies (RE & EE) at the State and City level to build Sustainable Low Carbon Cities' is aimed at driving the City-level use of Clean technologies through Renewable Energy and Energy Efficiency initiatives that impart local low Carbon development while addressing the increasing demand for energy which is expected to take manifold proportions in the coming years. Guided by strategies that abate GHG emissions based on the Energy Consumption profile of the Project cities, the project presents a basket of tailor-made solutions for each Project city achieved through City profiling, Emissions inventorization and creation of Local Action Plans that leverage the city-level development strategies of local governments for sustainable results.

This report is a culmination of the study undertaken by ICLEI-Local Governments for Sustainability in three Project cities in Tamil Nadu namely Coimbatore, Tiruchirapalli, and Tirunelveli. The cities have been chosen in order to represent the socio-economic diversity within the State and hence the varying infrastructure and civic facilities in each of these cities. Representing a range from a metropolitan to an urbanizing town, the cities of Coimbatore, Tiruchirapalli and Tirunelveli are representative of the diverse facets of the State.

Introduction to the Project, methodology followed and tools used are outlined in Chapter 1 and 2. Elucidation of the variations in social, economic and administrative facets of the State is made in Chapters 3. Chapter 4 presents the Coimbatore city's social, economic and administrative profile, energy consumption profile, GHG emission inventory and suggested low carbon action plans. Chapter 5 presents the Trichy city's social, economic and administrative profile, energy consumption profile, GHG emission inventory and suggested low carbon action plans. Chapter 6 presents the Tirunelveli city's social, economic and administrative profile, energy consumption profile, GHG emission inventory and suggested low carbon action plans. Chapter 6 presents the Tirunelveli city's social, economic and administrative profile, energy consumption profile, GHG emission inventory and suggested low carbon action plans. Chapter 6 presents the Tirunelveli city's social, economic and administrative profile, energy consumption profile, GHG emission inventory and suggested low carbon action plans. Chapter 6 presents the Tirunelveli city's social, economic and administrative profile, energy consumption profile, GHG emission inventory and suggested low carbon action plans followed by relevant references and annexes.

### 1. About the Project

Rapid urbanization and urban economic growth have led to emergence of a number of complex issues such as degradation of natural resources and increase in green house gas emissions that threaten sustainability of our cities. With Indian cities projected to rapidly urbanize between 2010 and 2030, the per capita carbon dioxide emissions are expected to increase from 1.0 -1.2 tonnes to 3.0 - 3.5 tonnes (Atkins, 2011). According to the McKinsey Global Institute, Indian cities have the potential to contribute approximately 70 percent of the country's Gross Domestic Product (GDP) by 2030 thus putting stress on the already overburdened urban systems which will be further aggravated on account of climate change factors (MGI, 2010). Managing greenhouse gas emissions, water consumption and waste management are some of the national priorities that present major investment opportunities in the coming years. The challenge of climate change and the need for a low carbon development model are well accepted by both policy makers and business leaders. Fuelled by economic liberalization and globalization, India aims to sustain its rapid economic growth, as well as protect the vulnerable segments of its society and climate sensitive sectors. India, with declining fossil fuel resources, needs to work towards transition to a more energy efficient, low carbon economy.

British High Commission (BHC) has initiated the project "Integrating Urban Climate Guidelines through Clean Technologies at the State and City Level to build Sustainable Low Carbon Cities" through ICLEI South Asia, funded under the Prosperity Fund of the UK's Foreign and Commonwealth Office. The objective of the project is to notify guidelines on urban low carbon actions and to leverage national/international finance for urban low carbon action for Tamil Nadu and Rajasthan States. The project will work towards building the capacity of state and city governments to successfully integrate urban climate guidelines on low carbon actions into major urban processes and systems. Activities will be initiated and monitored in 7 cities: Jaipur, Udaipur, Kota and Jodhpur in Rajasthan; and in Tiruchirapalli, Coimbatore and Tirunelveli in Tamil Nadu. Based upon this experience, the project aims to form well informed, comprehensive guidelines for state governments to implement.

#### 1.1 Project Activities & Outputs

- 1. A Report on Financing Opportunities for Low Carbon Urban Growth for States in India including an analysis of funding opportunities under various national and international financing schemes.
- 2. Knowledge online portal with (a) relevant guidance information for cities to identify and leverage international/ central/ state level programmes/funding schemes and (b) about low carbon technologies/ measures that can be implemented for city level low carbon actions.
- 3. Green House Gases (GHGs) Inventorization for all 7 project cities in Tamil Nadu and Rajasthan State
- 4. Preparation of City specific Action Plans focusing on Climate Change mitigation for selected 7 cities covering solid waste management (SWM), lighting, water and

sanitation pumping systems, housing, energy efficiency etc by incorporating feedback and suggestions from the city level stakeholder consultations.

- 5. An India specific Local Government GHG Protocol based on principles drawn from ICLEI's International Local Government GHG Emissions Analysis Protocol
- 6. City-level monitoring, reporting and verification (MRV) system framework for state governments
- 7. State-level guidelines on urban low carbon actions
- 8. Capacity building of city staff on GHG inventory and financial proposal writing for funds generation.

Report on "Urban Low Carbon Growth: Financing Opportunities for Indian Cities" project available prepared under this is on project web portal http://urbanlowcarbonfinance.iclei.org/. This report provides the details on the available financing opportunities for Low Carbon Urban Growth for States in India including analysis of funding opportunities under various national and international financing schemes relevant to urban low carbon actions. This report also informs both policy makers and local governments about the financial opportunities available to them to move towards the low carbon path. It helps to understand how the funding organizations, private partners can support climate action at the urban and local levels. Thus, the report highlights the ways in which existing financial mechanisms can be perceived by the city decision- makers, reveals barriers to the local government action and record processes through which local governments can pursue mitigation activities.

An online knowledge portal is being developed to guide cities to identify and leverage international/central/state level programmes/funding schemes to enable them to implement city level low carbon actions have been developed. The web portal will be updated as and when required to provide up to date information.

The web link for the project information is <u>http://urbanlowcarbonfinance.iclei.org/</u>.

This Report provides the brief profile of Tamil Nadu State and 3 project cities namely Tiruchirapalli, Coimbatore and Tirunelveli. The project cities' baseline energy consumption status and sectoral carbon emission inventory covering Residential, Commercial, industrial, Transport and waste has also been covered.

## 2. Methodology

One of the major outputs of the project is to come out with a GHG inventorization of 3 cities namely Coimbatore, Tiruchirapalli and Tirunelveli from Tamil Nadu State. The report includes the sector wise carbon emissions from the various energy and other sources. The emission inventory follows the principle drawn from WRI/WBCSD/ICLEI GHG Protocol (IEAP Protocol). The basic approach to calculate the carbon emissions is based upon the fuel & electricity consumption in various sectors (Residential, Commercial, Industrial, and Transportation, etc) and waste disposal.

ICLEI – South Asia has developed an in house software tool called Harmonized Emissions Analysis Tool (HEAT) Plus to calculate the GHG inventory from the energy consumption and waste disposal in the urban areas. This software tool is specifically designed for the urban local governments considering the type of energy used in the urban sector and the services delivered by the urban local bodies. The software covers the operations owned by Government as Government Operation Emissions (that includes all the services such as street lighting, water supply system, sewage system, etc.) and the Community Level emissions that includes the rest of the city information (such as residential, transportation, commercial, etc.).

#### **Measures and Metrics**

Carbon Dioxide (CO<sub>2</sub>): CO<sub>2</sub> is the reference of comparison of all GHGs.

Carbon Dioxide Equivalent (CDE): A metric measure used to compare the emissions from GHGs based on their GWP. Carbon dioxide equivalents are usually expressed as "Million Metric Tonnes of Carbon Dioxide Equivalents (MMTCDE)" or "Million Short Tonnes of Carbon Dioxide Equivalents (MSTCDE)".

#### **Notes and Assumptions**

Data has been collected from various sources, a few of which have been mentioned in the sections below. However, some information was not available, so the study used various methodologies and assumptions to create most probable values.

#### 2.1 **Project Boundaries**

The various services like – Street lighting, Water Supply and Water Treatment, Sewage Treatment Plants and Sewage Pumping Stations, Waste Management etc are maintained by respective ULBs like Municipal Corporations and Municipalities in Coimbatore, Tiruchirapalli and Tirunelveli. Study area has been limited to respective Corporation jurisdiction areas.

### 2.2 Methodology Followed

For the purpose of study estimations of GHG emissions for project cities have been done at two levels:

- Government operations inventories include emissions from all of the operations that a local government owns or controls. Common sectors in a government operations inventory include local government buildings and other facilities, streetlights, and water delivery facilities.
- Community-level inventories include emissions from all community activities within the local government's jurisdiction, including emissions from residential, commercial, transportation, industrial and waste sectors.

The complete methodology followed for the project is represented graphically below:



### 2.3 Data Collection

For the purpose of data collection and GHG inventory each of the urban area identified has been divided into two parts namely – Community Area and Government Area.

Community area is basically the total area falling under municipal corporation jurisdiction and includes all the energy consumption in that area in form of electricity consumption, fuel consumption for different sectors including the consumption of fuel for waste management.

Government area and the energy consumption includes the energy consumption for maintaining the various services of the municipal corporation whether it is street lighting, water supply and treatment, sewage treatment and supply and the waste management.

#### **Coimbatore Municipal Corporation**

Coimbatore municipal corporation area is the jurisdictional region under the administrative control of CMC and spread over 100 wards covering an area of 257 sq km. The Corporation limits were recently expanded in July 2011 to restructure 72 wards into 60 and add an additional 40 wards. The Corporation now has 5 zones in which these 100 wards are divided for ease of administration. While each zone has a Zonal officer, the city activities are administered by the Corporation.

The 100 wards are divided into 5 zones as:

- North Zone comprises wards No. 1 to 4, 26 to 31, 38 to 44, 46, 47 and 55.
- South Zone comprises wards No. 76 to 79, 85 to 100.
- East Zone comprises wards No. 32 to 37, 56 to 67, 69 and 75.
- West Zone comprises wards No. 5 to 24.
- Central Zone comprises wards No. 5, 45, 48 to 54, 68, 70 to 74 and 80 to 84.

The main functions of the Corporation are: Sanitation and solid waste management, provision and maintenance of street lights, development of city infrastructure, community development projects, slum improvement schemes, physical environment improvement projects, employment generation schemes, public health projects, maintenance of fire services, tax collection, and registration of birth and deaths etc. The Mayor is directly elected for five years.

#### **Tiruchirapalli Municipal Corporation**

Municipal Corporation of Tiruchirapalli has its jurisdictional control spread over 4 zones consisting of 60 wards covering an area of 147 sq km. The Corporation was upgraded to this level in 1994 with Mayor as head elected directly. The activities of the Corporation are executed by Commissioner who is facilitated by Zonal officers and additional commissioners for departments like Public Health, Accounts, and Town Planning etc. The Corporation is mainly responsible for provision of basis services like Roads, Street Light, Solid waste management, Sanitation, Storm water Drainage, Etc.

The 60 wards are divided into 4 zones as:

- Srirangam Zone comprises wards No. 1 to 6, 8 to 13, 16 and 18.
- Ariyamangalam Zone comprises wards No. 7, 14, 15, 19 to 29, 33,61,62,64
- Ponmalai Zone comprises wards No. 30 to 32, 34 to 39, 42 to 44, 46 to 18, 63 and 65.
- K. Abhishekapuram Zone comprises wards No. 40,41, 45, 49 and 60

#### **Tirunelveli Municipal Corporation**

Municipal Corporation of Tirunelveli has administrative control of an area that extends to 108.65 sq km covering 55 wards divided into 4 zones. The Corporation was upgraded to this level in 1994 with Mayor as head elected directly. The activities of the Corporation are executed by Commissioner who is facilitated by Zonal officers and additional commissioners for departments like Public Health, Accounts, and Town Planning etc. The Corporation is mainly responsible for provision of basis services like Roads, Street Light, Solid waste management, Sanitation, Storm water Drainage, Etc.

The data is collected from different departments pertaining to energy consumption in project cities. The data collected from different departments is then analyzed and GHG inventory has been prepared for each city.

Following table list the different departments from where data has been collected for the study:

# Table 2.1: List of Departments/Organizations Consulted for Data Collection

| Department/Organization       |
|-------------------------------|
| HPCL                          |
| Town Planning Department, CMC |
| TNEB, State Government        |

### 2.4 Tool Used

ICLEI – South Asia has developed an in house software tool called Harmonised Emissions Analysis Tool (HEAT) to calculate the GHG inventory from the energy consumption in the urban areas. This software tool is specifically designed for the urban local governments considering the type of energy used in the urban sector and the services delivered by the urban local bodies. This software tool is equipped with multiple features which not only calculates the emissions for the cities but also provides the cities with number of reports for different sectors and also identifies the priority sector for immediate action plan. For more information on HEAT software please login <u>www.heat.iclei.org</u>.

#### 2.4.1 The HEAT Plus Methodology/Formula

The HEAT Plus software estimation of GHGs Gases from Residential, Commercial, Industrial, Transport and Waste, etc is on the basis of the secondary data collected from the various city departments listed in Table 1 and the published reports of the respective Govt. Departments (City Development Plan, Coimbatore, Tiruchirapalli, Tirunelveli, Master Plan of Coimbatore (before jurisdictional restructure in 2011), Master Plan for Tirunelveli, Agricultural Research Databook 2002, CODISSIA, Tamil Nadu State Energy Department, Tamil Nadu State Forest Department etc).

#### 2.4.2 Community Inventory Module

The HEAT Plus uses the IPCC methodology approach (based on fuel and electricity consumption in the source sectors) for GHG gases emission estimation.

#### A. Residential, Commercial and Industrial Sectors:

Data required on:

• Fuel and electricity consumption

| residential/commercial/industrial sectors: |                                 |                                                                        |  |
|--------------------------------------------|---------------------------------|------------------------------------------------------------------------|--|
| Stationary                                 | Fuel Consumption                | Fuel Usage(Tonnes)*Emission<br>Factor(Kg/Gj)*Energy Density(Gj/Tonnes) |  |
| Electricity                                | Grid Electricity<br>Consumption | Energy Input(eKWh)*Emission Factor(Gms/KWh)                            |  |

# HEAT plus use the following formula to calculate the emissions at the residential/commercial/industrial sectors:

#### **B.** Transportation Sector:

Data required on:

- Fuel consumed by vehicle type OR total annual vehicle miles/kilometers traveled in your community by vehicle type Or Vehicle miles/kilometers (VMT/VKT) traveled, passenger miles/kilometers traveled (PMT/PKT)
- Costs of fuel consumption (optional)
- Fuel economy by vehicle type (optional)

The Transportation sector includes all fuel use associated with the movement of goods and people within the boundaries of your community. This sector calculates emissions based on either vehicle miles/kilometers traveled or fuel consumption data by vehicle type.

| at the transportation sector |                                                                      |                                                                                                                           |  |
|------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
|                              | Fuel Consumption<br>Based (Considering Fuel<br>Efficiency)           | Emission Factor (Gm/Km)*Fuel<br>Efficiency (Km/Mj)*Energy Density<br>(Gj/Ltr)*Fuel Usage (Ltrs)                           |  |
|                              | Fuel Consumption<br>Based (Considering<br>Energy Density)            | Fuel Usage (ltrs)*Emission Factor<br>(Kg/Gj)*Energy Density (Gj/Ltr)                                                      |  |
| Transportation               | Distance Based<br>(Considering<br>VKT/VMT) – No Fleet<br>Makeup      | Emission Factor (Kg/Km)*Distance<br>Travelled (Km)                                                                        |  |
|                              | Distance Based<br>(Considering Fuel<br>Economy) – No Fleet<br>Makeup | (Distance Travelled(Km)*Fuel<br>Consumption(Ltr/Km))/Occupancy<br>Factor*Emission Factor(Kg/Gj)*Energy<br>Density(Gj/Ltr) |  |

HEAT plus use the following formula to calculate the emissions at the transportation sector

#### C. Waste Sector

Data required on:

- Total annual amount of waste hauled to landfill OR known quantities of emissions
- Percentage composition breakdown of landfill waste
- Cost of land-filled waste by type (optional)
- Estimate of the percent of landfill methane recovered
- Amount of waste present in local landfills
- Cost of local landfills
- Landfill opening and closing dates
- Emission from the waste sector has been estimated using default method by using the total waste reaching the landfill sites annually and its organic content.

The Waste sector covers all waste generated by the community, as well as any waste that is brought to landfills or other waste management facilities that are wholly or partly owned or controlled by the local government. As it decomposes, waste creates emissions (e.g., methane) that can be significant in the context of your inventory.

HEAT PLUS calculates emissions from waste based on the amount and composition of waste in your community, waste management strategies employed, and the rate of methane recovery (if any) at local landfills. Using the Methane Commitment calculator, HEAT PLUS calculates the methane emissions that will eventually occur due to waste production in the base year, and assigns them to the base year. HEAT PLUS can also calculate methane emissions occurring from waste already present in landfills using the Waste-in-Place calculator.

|       |                                       | Methane<br>Commitment       | <ul> <li>[(1-R)A+B+C+D]*Quantity of Waste</li> <li>R - Methane Recovery Factory,</li> <li>A - eCO2 emissions of methane per tonne</li> <li>of waste at the disposal site,</li> <li>B - eCO2 sequestered at the disposal site,</li> <li>in tonnes per tonne of waste,</li> <li>C - eCO2 sequestered in the forest as the</li> <li>result of waste reduction and recycling</li> <li>measures Forest Sq,</li> <li>D - Upstream emissions from</li> <li>manufacturing energy use saved as the</li> <li>result of waste reduction or recycling, in</li> <li>tonnes of eCO2 per tonne of waste</li> </ul>    |
|-------|---------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waste | Landfill<br>(Managed or<br>Unmanaged) | Waste Site Closure<br>- FOD | QCH4 = $\sum_{i=1}^{n} \sum_{j=0.1}^{1} kL_o \left(\frac{M_i}{10}\right) e^{-kz_{ij}}$<br>QCH4= annual methane generation in the year of the calculation (m3/year)<br>i = 1 year time increment - goes from 0 to n and not 1 to n<br>n = (year of the calculation) - (initial year of waste acceptance)<br>j = 0.1 year time increment<br>k = methane generation rate (year-1)<br>Lo = potential methane generation capacity (m3/Mg)<br>Mi = mass of waste accepted in the ith year (Mg)<br>tij = age of the jth section of waste mass<br>Mi accepted in the ith year (decimal years, e.g., 3.2 years) |

#### HEAT PLUS uses the Following Formula to Calculate the Emissions in the Waste Sector

#### 2.4.3 Government Inventory Module

The Government Inventory module is designed to help you create an inventory of greenhouse gas and criteria air pollutant emissions produced directly by government's own operations (e.g., from local government-owned and local government-operated buildings, vehicles, streetlights, water pumping and sewage treatment operations). Operationally similar to the Community Inventory module, the Government Inventory module is organized into following sectors: Buildings, Facilities (Streetlights, Water/Sewage),

Transportation, Waste and Other. Based on information you provide about fuel and electricity use and waste production, this module calculates greenhouse gas and criteria air pollutant emissions resulting directly from your local government's operations.

#### A. Buildings, Streetlights, Water/Sewage Sector

These sectors cover fuel and electricity use (owned and/or occupied by your local government) in the respective sectors.

HEAT plus use the following formula to calculate the emissions in building sectors:

| Stationary  | Fuel Consumption                | Fuel Usage(Tonnes)*Emission                 |
|-------------|---------------------------------|---------------------------------------------|
|             |                                 | Factor(Kg/Gj)*Energy Density(Gj/Tonnes)     |
| Electricity | Grid Electricity<br>Consumption | Energy Input(eKWh)*Emission Factor(Gms/KWh) |

#### B. Transportation (Vehicle Fleet Sector, Employee Commute Sector)

The Vehicle Fleet sector consists of all the vehicles owned and/or operated by your local government, including road vehicles, construction equipment, boats, aircraft, etc. You should include both owned and leased vehicles.

The Employee Commute sector calculates energy use and greenhouse gas emissions associated with travel to and from work by employees of the local government.

HEAT plus use the following formula to calculate the emissions in the transportation sector:

|                | Fuel Consumption   | Emission Factor (Gm/Km)*Fuel Efficiency |
|----------------|--------------------|-----------------------------------------|
|                | Based (Considering | (Km/Mj)*Energy Density (Gj/Ltr)*Fuel    |
|                | Fuel Efficiency)   | Usage (Ltrs)                            |
|                | Fuel Consumption   | Fuel Usage (ltrs)*Emission Factor       |
|                | Based (Considering | (Kg/Gj)*Energy Density (Gj/Ltr)         |
|                | Energy Density)    |                                         |
| Transportation | Distance Based     | Emission Factor (Kg/Km)*Distance        |
| Transportation | (Considering       | Travelled (Km)                          |
|                | VKT/VMT) – No      |                                         |
|                | Fleet Makeup       |                                         |
|                | Distance Based     | (Distance Travelled(Km)*Fuel            |
|                | (Considering Fuel  | Consumption(Ltr/Km))/Occupancy          |
|                | Economy) – No      | Factor*Emission Factor(Kg/Gj)*Energy    |
|                | Fleet Makeup       | Density(Gj/Ltr)                         |

#### **2.4.4 Emissions Factors**

HEAT PLUS contains thousands of emissions factors and energy densities for a wide range of fuels, combustion technologies and waste types. HEAT PLUS uses these values to calculate the greenhouse gas emissions and criteria air pollutants resulting from electricity usage, fuel consumption and waste decomposition. HEAT PLUS maintains one set of default emission factors and energy densities, and allows for the creation of one user modifiable set of emission factors and energy densities per account. You are able to view the values in the default set, but you cannot change these values. You can both view and change the values in the user modifiable set.

#### 2.4.5 Energy Densities

HEAT PLUS contains energy densities for three different fuel types: solid, liquid, and gaseous. Solid fuels only have a weight (mass) density. Liquid fuels have both a weight (mass) and volume (liquid volume) density. Gaseous fuels only have a gas (gaseous volume) density. HEAT PLUS maintains one set of default energy densities and allows for the creation of one user modifiable set of energy densities per account. You are able to view the values in the default set, but you cannot change these values. You can both view and change the values in the user modifiable set.

#### 2.5 How HEAT PLUS Calculates Emissions?

HEAT PLUS calculates the greenhouse gas and criteria air pollutant emissions produced and avoided based on energy use, waste production and other sources. The pollutants that HEAT PLUS tracks are carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), nitrogen oxides (NOx), sulfur oxides (SOx), carbon monoxide (CO), volatile organic compounds (VOCs) and coarse particulate matter (PM10). In addition to reporting emissions of these individual gases, HEAT PLUS also aggregates the emissions of the three primary greenhouse gases—CO2, N2O and CH4—and reports them in carbon dioxide equivalence (eCO2), a commonly used unit that combines greenhouse gases of differing impact on the earth's climate into one weighted unit.

HEAT PLUS calculates emissions from energy use on an end-use basis. For example, HEAT PLUS attributes the emissions associated with a kilowatt-hour of electricity to the jurisdiction using the electricity, not the power plant at which the electricity is generated. For emissions from energy use, the software converts energy use data into emissions using specific emission factors (coefficients) that relate the emissions of a particular pollutant (e.g., carbon dioxide and nitrous oxide) to the quantity of the fuel used (e.g., kilograms of coal or therms of natural gas) and the technology in which the fuel is combusted (e.g., a two-stroke internal combustion engine).

HEAT PLUS calculates methane emissions from the waste sector based on the way in which the biomass component of the waste decomposes over time. The amount of methane generated by waste depends on its composition and on the waste disposal technology. In addition, for measures that reduce waste generation or divert waste to more productive uses (e.g., composting and recycling), HEAT PLUS calculates upstream energy and non-energy emissions reductions from manufacturing.

## 3. Tamil Nadu State Profile

The South Indian State of Tamil Nadu has a unique identity and was formed on the basis of the Tamil language and culture which is a matter of esteem for the citizens of the State. Situated on the eastern section of the Indian peninsula, Tamil Nadu shares its borders with neighboring States of Andhra Pradesh, Karnataka, Kerala and the Union Territory of Pondicherry. The State occupies 11<sup>th</sup> position in terms of area and 7<sup>th</sup> position in terms of population and population density according to the 2011 census findings<sup>1</sup>. It is the fourth largest contributor at 7.49% to the national GDP<sup>2</sup> and is one of the most urbanized regions in the country.

Formed on 26<sup>th</sup> January 1950 and renamed as Tamil Nadu in 1969, Tamil Nadu has Chennai as its capital city. The State has 32 districts, 10 city corporations, 125 municipalities, 529 town panchayats and 12,524 village panchayats. It comprises of 39 Lok Sabha constituencies and 234 Legislative Assembly constituencies.

#### 3.1 Details of Location, Geography and Climate of Tamil Nadu

#### 3.1.1 Location

Tamil Nadu is located at 13° N lat and 80° E long and borders with three other States on the north, North West and western sides and one Union Territory. About 12 districts of the State have a coast line which extends the length of the State bordering with Bay of Bengal to the east, Gulf of Mannar and Palk Strait to the south east and Indian Ocean to its south.



Figure 3.1: Position of Tamil Nadu

<sup>&</sup>lt;sup>1</sup> Tamil Nadu population Census of India 2011

<sup>&</sup>lt;sup>2</sup> Tamil Nadu national GDP contribution percentage-

http://unidow.com/india%20home%20eng/Statewise\_gdp.html

#### 3.1.2 Geography

Covering an area of 130,058 sq km, Tamil Nadu has a varied geography consisting of hills and plateaus, rivers and lakes. While the Eastern and Western Ghats culminate in the State near the Nilgiri mountain range effectively blocking the border it shares with Kerala, the Eastern part of the State is green as a result of the coastal plains receiving the life-giving water from the rivers that emerge from the mountains to the west in the State.

The fertile coastal plains are fed by River Kaveri, River Bhavani, River Thamirabarani that emerge from the mountains in the Western Ghats and culminate either by draining into the Bay of Bengal or split into several tributaries creating reservoirs along the way before draining into the bay. The fertile coastal plains support agricultural activities in the State that generate produce like Rice, Banana, Mango, Coconuts, and Cotton etc. The region surrounding the Kaveri delta is renowned for paddy cultivation and is considered as the Rice Bowl of South India.

#### 3.1.3 Climate

The climate in Tamil Nadu ranges over seven agro-climatic zones (see area under each zone below) and has varying climate experiences depending on the geographical location and altitude. On an average, the plains in the State experience a temperature range from  $13^{\circ}$  C min to  $43^{\circ}$  C max. The temperature at higher altitudes is in the range of  $3^{\circ}$  C min and  $32^{\circ}$  C max.

Tamil Nadu is heavily dependent on Monsoon which inevitably renders the State vulnerable to delays and absence of Monsoon rains. The normal annual rainfall the State receives is about 945 mm of which 48% is received during the North West Monsoon season and only 32% during South West Monsoon. The description of each zone is as follows:

| Agro-Climatic zone | Area (sq.kms) | Description                                          |
|--------------------|---------------|------------------------------------------------------|
|                    |               | 50% area under agriculture. The region has rich      |
| Kaveri Delta       | 24943         | fertile soils that support paddy cultivation. Also   |
|                    |               | known as Rice Bowl of South India                    |
|                    |               | 50.5% area under agriculture. Also known for good    |
| North East Zone    | 32194         | agricultural produce with area irrigated via lakes   |
|                    |               | and dams                                             |
| West Zone          | 15670         | 44.5% area under agriculture. This region is         |
| west Zone          | 150/8         | relatively more arid and dry                         |
| North West         | 10071         | 23% agriculture area and 30% forest area.            |
| North West         | 18271         | Moderately drought prone region                      |
|                    | 2549          | 58.9% covered by forest area. Absence of major       |
|                    |               | irrigation systems due to absence of rivers.         |
| High Altitude      |               | Thriving agricultural activities are tea, coffee and |
| -                  |               | vegetable cultivation near the Nilgiris mountain     |
|                    |               | ranges                                               |
|                    |               | 45% area under agriculture. The zone is drought      |
| South Zone         | 36655         | prone and irrigated through dams, lakes and canal    |
|                    |               | systems                                              |

 Table 3.1: Climatic zones in Tamil Nadu<sup>3</sup>

<sup>&</sup>lt;sup>3</sup> Planning Commission of India- planningcommission.nic.in/reports/sereport/ser/7vgtn/v3\_ch3.pdf

| Agro-Climatic zone | Area (sq.kms) | Description                                                                                                         |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------|
| High Rainfall      | 1684          | 62% area under agriculture. Offers a varied<br>agricultural produce of Banana, Sugar, Coconut,<br>Rubber and Paddy. |

#### 3.2 Administrative profile

The Governor is the constitutional head and the Chief Minister is the head of the government who presides over the council of ministers. The judiciary is headed by the Chief Justice. The State is divided into 32 districts and further subdivided into Corporation areas and municipalities and so on. For the purpose of administration, the State revenue and developmental activities are discharged by district divisions into Taluks and Blocks separately as shown below:

| A                         |       |
|---------------------------|-------|
| Districts                 | 32    |
| Revenue Divisions         | 76    |
| Taluks                    | 215   |
| Revenue Villages          | 16564 |
| Municipal Corporations    | 10    |
| Municipalities            | 148   |
| Panchayat Unions (blocks) | 385   |
| Town Panchayats           | 559   |
| Village Panchayats        | 12620 |
| Constituencies            |       |
| - Lok Sabha               | 39    |
| - Assembly                | 234   |

 Table 3.2: Administrative profile of Tamil Nadu<sup>4</sup>

Administrative control is discharged from Chennai (formerly Madras) which is the fourth most populous metropolitan city is India and  $30^{\text{th}}$  largest city in the world. The city covers an area of 426.7 sq. km and is populated by 6.2 million inhabitants in the main city region itself.

#### 3.3 State Economy profile of Tamil Nadu

The general economic trend in Tamil Nadu has been an increasing inclination of growth towards the secondary and tertiary sectors as opposed to the primary sector. The State registered an overall annual average growth rate of  $6.21\%^5$  in 2000-2001. In 2011, the GSDP of the State contributed 7.49% towards the total national GDP with a per capita income of INR 72,993<sup>6</sup>.

#### **Primary Sector**

The State has a varied agro-based output with primary produce consisting of Rice, Coconut, Sugarcane and a wide range of food grains. The State registers an annual food

<sup>&</sup>lt;sup>4</sup> Department of Economics and Statistics-Tamil Nadu

<sup>&</sup>lt;sup>5</sup> Development Commissioner-Ministry of Micro, Small and Medium enterprises-

http://dcmsme.gov.in/publications/traderep/sptnadu.pdf

<sup>&</sup>lt;sup>6</sup> Economy of federal States in FY2011- <u>http://unidow.com/india%20home%20eng/Statewise\_gdp.html</u>

grain production of 10 million tonnes with Rice alone exceeding 8 million tonnes. The State stood 5<sup>th</sup> in 2008 in terms of paddy output. Agriculture is practiced in about 58.2% of total area of the State. In addition, animal husbandry and livestock farming are other major primary activities and Tamil Nadu is the leading State in livestock, poultry and fisheries output.

#### Secondary sector

Tamil Nadu has been regarded as one of the most important States in terms of industrial and engineering output in the country. Heavy industry, Pump manufacturing, Textile machinery, Automobile parts, Electronics and others have made a considerable impact on the growth rate of economy in the State which stood at 11%<sup>7</sup> in 1999-2000. In 2008-09, the State rendered a total value of INR 12807432 lakh in production and employed about 1245928 workers out of the total workforce of 4,05,24,545<sup>8</sup>. In addition, the Khadi and Cottage industries generated INR 161735.03 lakh in profits in 2009-10. Following table indicates the breakdown indicating the industry subsectors and their contribution to national output.

| Industry subsector        | % of total national output |
|---------------------------|----------------------------|
| Heavy commercial vehicles | 27                         |
| Railway coaches           | 49                         |
| Newsprint                 | 17                         |
| Power driven pumps        | 50                         |
| Safety matches            | 90                         |
| Auto components           | 35                         |
| Motor cycles & mopeds     | 26                         |
| Cotton yarn               | 32                         |
| Leather products          | 70                         |

Table 3.3: Secondary sector industry's share in national  $output^9$ 

#### **Tertiary Sector**

Tamil Nadu has a resurging share of software companies, financial service companies, tourism, hospitality, real estate, and communication and consultancy services. Tamil Nadu held a substantial share in software exports from India and grew by 29% in 2008-09 to INR 366 billion<sup>10</sup>. The Tourism industry in Tamil Nadu was second largest in India.

<sup>&</sup>lt;sup>7</sup> Development Commissioner-Ministry of Micro, Small and Medium enterpriseshttp://dcmsme.gov.in/publications/traderep/sptnadu.pdf

<sup>&</sup>lt;sup>8</sup> Development Commissioner-Ministry of Micro, Small and Medium enterprises-

http://dcmsme.gov.in/publications/traderep/sptnadu.pdf

<sup>&</sup>lt;sup>9</sup> Tamil Nadu Government-Urban Scenario assessment-*www.tn.gov.in/cma/urban-report.pdf* <sup>10</sup> TN logs 29% growth in software exports-

http://timesofindia.indiatimes.com/tech/techhome/5880659.cms

#### **Demographic trends** 3.4

According to 2001 census, Tamil Nadu had a population of 62, 405,679 and the State registered a decadal growth rate of 11.7%<sup>11</sup>. In 2011, Tamil Nadu's population grew to 72, 138, 958 and the decadal growth rate was 15.6%<sup>12</sup>. Tamil Nadu had a literacy rate of 73.47% which increased to 80.33%. In 2001 the sex ratio in the State was 987 females per 1000 males and this figure increased to 995 in 2011<sup>13</sup>. Following tables indicate the population growth and current demographic profile.

| Table 3.4: Population growth in Tahin Nadu |            |                  |  |  |  |  |  |  |
|--------------------------------------------|------------|------------------|--|--|--|--|--|--|
| Year                                       | Population | Decadal Growth % |  |  |  |  |  |  |
| 1961                                       | 33687000   | -                |  |  |  |  |  |  |
| 1971                                       | 41199000   | 22.3             |  |  |  |  |  |  |
| 1981                                       | 48408000   | 17.5             |  |  |  |  |  |  |
| 1991                                       | 55859000   | 15.4             |  |  |  |  |  |  |
| 2001                                       | 62405678   | 11.7             |  |  |  |  |  |  |
| 2011                                       | 72138958   | 15.6             |  |  |  |  |  |  |

| Table 3.4: Population | growth in Tamil Nadu <sup>14</sup> |
|-----------------------|------------------------------------|
|-----------------------|------------------------------------|

| Table 3.5: Population data of Tab  | iii nadu |
|------------------------------------|----------|
| Total Persons                      | 72138958 |
| Males                              | 36158871 |
| Females                            | 35980087 |
| Sex ratio                          | 995      |
| Total Persons below 6 years in age | 6894821  |
| Males below 6 years in age         | 3542351  |
| Females below 6 years in age       | 3352470  |
| Sex ratio(0-6)                     | 947      |
| Total literates                    | 52413116 |
| Literate Males                     | 28314595 |
| Literate Females                   | 24098521 |
| Male Literacy rate                 | 86.81%   |
| Female Literacy rate               | 73.86%   |

Table 2 5. Population data of Tamil Nadu<sup>15</sup>

#### 3.5 **Ecological and Forest profile**

Forests cover in the Western and North Western regions of the State in 2010 was 16.47% of the total State area which increased to 28.1% in 2011<sup>16</sup>. The State Forest department aims to increase forest cover to the nationally prescribed 33.33% through several initiatives<sup>17</sup>. The current forest cover and produce details are indicated in the tables below:

<sup>&</sup>lt;sup>11</sup> Census of India 2001

<sup>&</sup>lt;sup>12</sup> Census of India 2011

<sup>&</sup>lt;sup>13</sup> Census of India 2011

<sup>&</sup>lt;sup>14</sup> Census of India 2011

<sup>&</sup>lt;sup>15</sup> Census of India 2011

<sup>&</sup>lt;sup>16</sup> Planning Commission of India- *planningcommission.nic.in/reports/sereport/ser/7vgtn/v3\_ch3.pdf* 

<sup>&</sup>lt;sup>17</sup> Tamil Nadu Forest Department http://www.forests.tn.nic.in/aboutus.html

#### Table 3.6: Tamil Nadu forest cover\*

| Forest Area          | 21431 sq. km |
|----------------------|--------------|
| Reserved Forests     | 19214 sq. km |
| Reserved Areas       | 1552 sq. km  |
| Unclassified Forests | 665 sq. km   |
|                      | 1 0010       |

\*Department of Economics and Statistics 2010

#### Forest produce from Tamil Nadu\*

| Teals Wood                         | 2271 Matrie Terras (MT) |
|------------------------------------|-------------------------|
| Teak wood                          | 22/1 Metric Tonnes (MT) |
| Firewood                           | 3427.2 MT               |
| Pulpwood                           | 13054 MT                |
| Sandalwood (sapwood and heartwood) | 16.5 MT                 |
| Bamboo                             | 1254.3 MT               |
| Tamarind                           | 13670.5 MT              |

\*Department of Economics and Statistics 2010

#### 3.6 Energy profile of Tamil Nadu State

As mentioned earlier, the total installed capacity of power generation from conventional sources in Tamil Nadu is 10, 237 MW. However, the actual availability is about 8000 MW on an average giving rise to a sharp deficit of 2500 MW to 3500 MW for a demand that often reaches a maximum of 11,500 MW. These shortages are attributed to the prevalent congestion in the transmission corridors that were designated to provide power to Tamil Nadu and inordinate delays in power projects by BHEL, NLC and NTPC<sup>18</sup>. The State is foremost in wind energy capacity with total installations at 6007 MW making India rank 5<sup>th</sup> in the world with a cumulative installed wind capacity of 13 GW<sup>19</sup> at the end of 2010.

#### 3.7 Actions at State level

| Action/Initiative                                                       | Initiative type | Description                                           |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-----------------|-------------------------------------------------------|--|--|--|--|--|--|--|
| Reduction in AT&C                                                       | EE              | Lowest in the country, AT&C losses in Tamil Nadu      |  |  |  |  |  |  |  |
| losses <sup>20</sup>                                                    |                 | are 18.5% which are further being reduced to 18.1%    |  |  |  |  |  |  |  |
|                                                                         |                 | through strengthening Transmission systems and        |  |  |  |  |  |  |  |
|                                                                         |                 | checking for energy thefts                            |  |  |  |  |  |  |  |
| Phased segregation of                                                   | EE              | Converting LT lines into HT lines to reduce losses in |  |  |  |  |  |  |  |
| feeders to curb distribution                                            |                 | parallel to feeder separation with an estimated       |  |  |  |  |  |  |  |
| power losses <sup>21</sup>                                              |                 | investment of INR 6000 Crores                         |  |  |  |  |  |  |  |
| Bachat Lamp Yojana                                                      | EE              | BEE supported Ministry of Power scheme to replace     |  |  |  |  |  |  |  |
| (BLY) <sup>22</sup> incandescent light bulbs with energy efficient CFLs |                 |                                                       |  |  |  |  |  |  |  |
|                                                                         |                 | to result in peak demand reduction of 500-600 MW      |  |  |  |  |  |  |  |
| Restructured Accelerated                                                | EE              | To improve power quality, reliability and curb        |  |  |  |  |  |  |  |
| Power Development and                                                   |                 | AT&C losses. Initiated by Ministry of Power to        |  |  |  |  |  |  |  |

| <b>Table 3.7:</b> | Actions | undertaken | at | State | level |
|-------------------|---------|------------|----|-------|-------|
|                   |         |            |    |       |       |

<sup>19</sup> Indian Wind Energy Outlook 2011-report by GWEC-

<sup>&</sup>lt;sup>18</sup> Jayalalithaa writes to PM over power shortage-http://zeenews.india.com/news/tamil-nadu/jayalalithaa-writes-to-pm-over-power-shortage\_762850.html

www.gwec.net/fileadmin/images/.../IWEO\_2011\_FINAL\_April.pdf

<sup>&</sup>lt;sup>20</sup> Tamil Nadu Energy department-http://www.tn.gov.in/policynotes/pdf/energy.pdf

<sup>&</sup>lt;sup>21</sup> Tamil Nadu Energy department-http://www.tn.gov.in/policynotes/pdf/energy.pdf

<sup>&</sup>lt;sup>22</sup> Tamil Nadu Energy department-http://www.tn.gov.in/policynotes/pdf/energy.pdf

| Action/Initiative                     | Initiative type | Description                                          |
|---------------------------------------|-----------------|------------------------------------------------------|
| Reforms Program                       |                 | comprehensively restructure transmission system and  |
| $(RAPDRP)^{23}$                       |                 | modernize power management via SCADA, DMS.           |
| Tamil Nadu Solar Policy <sup>24</sup> | RE              | Aims to generate 3000MW of solar power by 2015-      |
|                                       |                 | 16, more than 33% of national target. Aims to power  |
|                                       |                 | 100,000 streetlights and 300,000 houses with SPV     |
|                                       |                 | devices and encourage use of wind-solar hybrid       |
|                                       |                 | systems and aerogenerators for captive power         |
|                                       |                 | generation on educational institutions and official  |
|                                       |                 | buildings. National Clean Energy Funds will be       |
|                                       |                 | leveraged.                                           |
| Tamil Nadu State Action               | Comprehensiv    | Development oriented integrated framework for        |
| Plan on Climate Change                | e               | addressing climate change. The Action Plan laid out  |
| $(SAPCC)^{25}$                        |                 | in context of sectoral development as follows: Water |
|                                       |                 | Resources, Sustainable Agriculture, Coastal Area     |
|                                       |                 | Management, Forest and biodiversity, RE/EE           |
|                                       |                 | proposals, Solar Mission, Sustainable Habitat,       |
|                                       |                 | Knowledge Management                                 |

 <sup>&</sup>lt;sup>23</sup> Tamil Nadu Energy department-http://www.tn.gov.in/policynotes/pdf/energy.pdf
 <sup>24</sup> Tamil Nadu's new solar energy policy to add 3000 MW-http://articles.economictimes.indiatimes.com/2012-03-12/news/31153069\_1\_solar-power-national-solar-mission-renewable-energy
 <sup>25</sup> Tamil Nadu State Government-Policy Notes on Environment-wurvu to gov in conferences (adf/environment adf)

www.tn.gov.in/policynotes/pdf/environment.pdf

## 4. Coimbatore City

### 4.1 City Profile

Also known as Kovai, Coimbatore is regarded as the Manchester of South India owing to its significance as an important industrial city second only to the capital city Chennai. Situated to the west of the state, Coimbatore forms a focal point located conveniently for the cities of Chennai, Bangalore and Kochi. Its vicinity to the famous hill station Ooty also makes it a popular destination visited by many. The region historically having exchanged control through struggle among various kingdoms like Chalukyas, Pandya and Cholas found its way eventually into British control in 1799 soon after the fall of Tippu Sultan. After several territorial and administrative reorganizations, Coimbatore was aligned with the state of Tamil Nadu upon independence.

Traditionally famous for its cotton textile industry, Coimbatore has emerged as a resurging entrepreneurial city in the heart of South India. Encouraged by the allocation of lucrative incentives for development of IT parks and IT SEZs, the state government has successfully evinced the interest of national and international developers. Due to the thriving talent pool of graduates from its universities and several engineering colleges, Coimbatore has attracted growth and furthered its economic standing in the state. A vast human resource and a conducive business atmosphere has enabled multinational companies like TCS, Spheris, Bosch to set shop in Coimbatore adding to its profile of successful businesses in addition to the flourishing textile and automobile industry.

#### 4.1.1 Details of Location, Geography and Climate of Coimbatore

#### Location

Coimbatore forms a focal point for Chennai, Bangalore and Kochi in southern India. Located to the west of Tamil Nadu bordering with the neighbouring state of Kerala



Figure 4.1: Location of Coimbatore

Coimbatore acts as an exit and entry point for Udhgamandalam or Ooty, and a world famous tourist destination visited all year round. The city is located at 11° N lat and 76° E long and is 411.2 meters above the sea-level.

#### Geography

Coimbatore is flanked by the Western Ghats on its North and North West and the Nilgiri forest reserve covers most of its Northern borders. Located on the northern banks of River Noyyal, the city experiences a salubrious climate throughout the year. The city extends over an area of 257 square km after jurisdictional changes in July 2011 downsized the original number of wards from to 60 and added 40 new ones from the neighboring regions. The corporation now controls 100 wards.

Coimbatore sits on rich and fertile black cotton soil that although doesn't extend deep into the surface is spread all over the city. The surface topography is mainly flat and undulating at the slopes especially for the elevated regions lying to the North and North West of the city. Scattered around with water bodies like Narsapathi lake, Perur lake, Periya Kulam and the Singnallur lake which is especially famous for spot-billed Pelicans, the topography of the city and its vicinity to the Western Ghats and Nilgiris make it a conducive region where a variety of flora and fauna thrive.

#### Climate

Because of its location, Coimbatore's climate remains pleasant all through the year. The typical temperature range of the city is 18° C minimum and 39°C maximum and it receives a rainfall of 600mm to 700mm annually. The presence of the 25km Palaghat pass enables the elevated parts to receive rains of the South-West monsoon and soon after the main monsoon hits the city during the months of October and November which are the wettest months during a year.

| <b>Temperature Profile</b> (° C)                |    |    |    |    |    |    |    |    |    |     |    |    |
|-------------------------------------------------|----|----|----|----|----|----|----|----|----|-----|----|----|
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec |    |    |    |    |    |    |    |    |    | Dec |    |    |
| MAX                                             | 31 | 34 | 36 | 36 | 35 | 32 | 31 | 32 | 33 | 32  | 30 | 29 |
| MIN                                             | 19 | 20 | 22 | 24 | 24 | 23 | 22 | 22 | 22 | 22  | 21 | 19 |

| Table 4.1: Temperature and Rainfall p | profile of Coimbatore |
|---------------------------------------|-----------------------|
|---------------------------------------|-----------------------|

| Rainfall Profile                          |     |     |     |     |        |     |     |     |                |                 |     |     |
|-------------------------------------------|-----|-----|-----|-----|--------|-----|-----|-----|----------------|-----------------|-----|-----|
|                                           | Jan | Feb | Mar | Apr | May    | Jun | Jul | Aug | Sep            | Oct             | Nov | Dec |
| in mm 6 11 23 44 66 38 27 31 50 64 138 43 |     |     |     |     |        |     |     |     |                | 43              |     |     |
| G 1                                       |     |     | 7   | 7.  | 10.1.1 |     | 7   |     | <b>(T</b> ) 11 | <b>XX 1 (XX</b> | T   |     |

Source: http://www.worldweatheronline.com/Coimbatore-weather-averages/Tamil-Nadu/IN.aspx

#### Administrative profile

Coimbatore city municipality was upgraded to Municipal Corporation level in 1981. After jurisdictional restructuring in July 2011, the Corporation currently oversees the administration in 100 wards. The Corporation is headed by the Mayor, elected directly by the citizens of the city while its duties are executed by the Commissioner who presides over Senior Officers in charge of different departments of the Corporation like Administration, Engineering, Public Health, Accounts, Planning and Revenue. Following are brief notes on the civic services undertaken by the Corporation.

#### Water Supply

The city receives water through schemes like Siruvani, Pilloor and Athikadavu. Despite a generous Monsoon downpour, the city fails to cover up the deficit of 25 liters per capita per day (lpcd). Proposals for increasing water supply through the Pilloor scheme are currently underway which would convey about 130 lpcd to the city taking care of future water demand as well.

#### Solid Waste Management and Sewerage

Coimbatore city currently has four waste transfer stations at locations such as Peelemedu, Sathy road; Ukkadam and Ondipudur and each have a total design capacity of 650 tons per day (TPD). This capacity will suffice for not just the current quantity of waste generated in the city which is about 635 TPD but also the anticipated increase in the future. A Sewer Treatment Plant at Ukkadam caters to the city's sewer management system. The STP designed for 70 MLD is expected to cover the city's demand for the next 15 years.

#### **Street Lighting**

In 2011, Coimbatore's streets were lit by 65,194 street lights<sup>26</sup> of which 34,000 are in the old jurisdictional area consuming about 10 million kWh annually<sup>27</sup>. Corporation's energy conservation initiatives have resulted in 12% reduction in energy consumption charges. With 80% of such measures already completed, the Corporation aims to accomplish 100% energy saving measures in its street lighting systems by 2016.

#### **Roads and Transport**

Coimbatore city is internally well connected through the large network of roads maintained by the Corporation. The NH 47 runs through its centre and the extent of the road network is 635.52 km. Currently the road network covers 8 km/sq.km of the city.

#### **Public Health**

Ensuring public health in the community, the Coimbatore city Corporation maintains 16 dispensaries, 2 maternity hospitals and 20 urban health posts which cater through qualified doctors, nurses and paramedical staff. In addition, the city has more than 850 private hospitals and dispensaries.

 <sup>&</sup>lt;sup>26</sup> CMC Street lights distribution as per new jurisdictional arrangement, 2012
 <sup>27</sup>Corporation's power conservancy measures yield dividends

http://www.thehindu.com/news/cities/Coimbatore/article2720112.ece

#### Infrastructure and Facilities

In addition to a fairly efficient road network, Coimbatore's Municipal Corporation which aims to increase the length of its roads already has an airport and a well established rail network running through the city, increasing its visibility and connectivity.

#### **Demographic trends**

According to the 2001 census finding, Coimbatore within its previous jurisdictional boundaries had a population of 9, 30,882. Based on the 2011 census finding; the city had a population of 2,151,466. The city registered a decadal growth rate of 15.51% in 2001. Until 2011, the average annual growth rate has been calculated as 56.54% and annual growth rate was 5.7%. Also, according to 2011 census, the sex ratio in Coimbatore city has been estimated at 996 and the literacy rate which is among the highest in the country is 89.23%. Following the population trends since 1961 until 2011:

| Year   | Population | Decadal Growth % |
|--------|------------|------------------|
| 1961   | 286305     | -                |
| 1971   | 356368     | 24.47            |
| 1981*  | 700923     | 96.68            |
| 1991   | 806321     | 15.04            |
| 2001   | 930882     | 15.45            |
| 2011** | 2151466    | 131              |

#### Table 4.2: Population growth in Coimbatore

\*Upgraded to Municipal Corporation level

\*\*Neighbouring areas included and ward size increased from 72 to 100

| Total Persons                      | 2151466 |
|------------------------------------|---------|
| Males                              | 1077812 |
| Females                            | 1073654 |
| Sex ratio                          | 996     |
| Total Persons below 6 years in age | 193497  |
| Males below 6 years in age         | 98499   |
| Females below 6 years in age       | 98998   |
| Sex ratio(0-6)                     | 964     |
| Total literates                    | 1747178 |
| Literate Males                     | 912408  |
| Literate Females                   | 834770  |
| Male Literacy rate                 | 93.17%  |
| Female Literacy rate               | 85.30%  |

#### Table 4.1.3: Population data\*

\*Census of India 2011

#### Socio-economic profile

Coimbatore, as one of the most important industrial cities of southern India, has evolved into a manufacturing hub featuring not just textile mills, which it is famous for, but also a diverse assortment of industries ranging from auto component based to agro based and in recent years IT based. Besides textiles Coimbatore is famous for pump manufacturing and its resurging software market with incidence of international companies. The city attracts a large number of people from within the district and neighbouring regions and is a major employment hub in southern India. Because of the presence of a large number of colleges and universities, the city boasts of a talent pool which suffices for the growing job market. While culturally inclined towards entrepreneurship, the city has about 89% of people working in the tertiary sector. Following is the workforce participation breakdown in context of the sectors.

| Sector                                         | Number of Persons |
|------------------------------------------------|-------------------|
| Primary                                        | 6507              |
| Secondary                                      | 15340             |
| Tertiary(inclusive of Livestock and Mining, HH | 336407            |
| and Industry)                                  |                   |
| Total Workforce                                | 358254            |
| Non-Workers                                    | 572628            |
| Workforce participation rate                   | 38.9%             |

#### Table 4.3: Workforce participation\*

\*Census of India 2001

#### **Industry profile\***

| Type of Industry                                 | Capacity                       |
|--------------------------------------------------|--------------------------------|
| Cotton Textiles:                                 |                                |
| - Textile Mills                                  | 794 units (55,73,384 Spindles) |
| - Power looms                                    | 30,000 units (133000 Nos.)     |
| - Handlooms                                      | 17,000 units (50000 Nos.)      |
| Hosiery Units                                    | 8250 units                     |
| Electric Motors, Pump sets and allied Industries | 2140 units                     |
| Wet Grinder and Accessories                      | 700 units                      |
| Coir Industries                                  | 350 units                      |
| Jewellery Industry                               | 150 tonnes /annum              |
| Textile Machinery, Automobile parts Industries   | 4000 units                     |

\*National Information Centre-Industries in Coimbatore district 2006

#### **Ecological and Forest profile**

Sitting amidst the Western Ghats on the North and Northwest, Coimbatore is surrounded by the Nilgiri Forest Reserve that contributes to the rich ecology around the city. In addition to this, the fertility of the region has been a catalyst to the thriving agricultural practices around the city. Although the land used for agriculture has reduced to a large extent mainly as a result of population increase, the city still covers a substantial percentage of land under agricultural activities. The land use pattern according to the most latest available stats are as follows:

#### Table 4.4: Land use pattern\*

| Sector                   | % of total area |
|--------------------------|-----------------|
| Residential              | 59.84           |
| Commercial               | 2.65            |
| Industrial               | 4.65            |
| Educational              | 6.26            |
| Public & Semi public use | 2.57            |
| Agricultural             | 24.03           |

\*2002 statistics, Master Plan Coimbatore City

#### Table 4.1.7: Green cover\*

| Forest Cover              | 1586 square kilometers      |
|---------------------------|-----------------------------|
| Forest produce            | Timber, Mango, Walnut, Silk |
| Urban and Suburban plants | 15384                       |
| Lakes (wetlands)          | 9                           |

\*CDP Coimbatore city and Coimbatore Forest division

#### Actions at City level

Following is a brief overview of the host of actions undertaken towards RE and EE development affecting GHG abatement in Coimbatore city.

| City layel Action    | Description                     | Impost                                              |
|----------------------|---------------------------------|-----------------------------------------------------|
| City level Action    | Description                     | Impaci                                              |
| Local Renewables     | City wide Energy consumption    | Overview of the energy status and                   |
|                      | assessment in different sectors | identification of actionable initiatives            |
|                      | Street lights energy saving     | 30% reduction in energy consumption                 |
|                      | project on 34,000               | and related GHG emissions                           |
|                      | Tubewell energy audit for 700   | Reduction of 1 to 5 tCO <sub>2</sub> e per tubewell |
|                      | tubewells                       |                                                     |
|                      | Installation of Wind Solar      | Reduction in 136,000 kWh per year                   |
|                      | Hybrid system on                | with approx. reduction of 12,096 kg                 |
|                      | Mettupalayam bus terminal       | $CO_2$ emissions per year                           |
| Roadmap for South    | Profiling of Coimbatore         | Feasible Action plans suggested that                |
| Asian Cities and     | Energy profile and              | were discussed with participating cities            |
| Local Governments    | comprehensive Carbon            | including Coimbatore like Building                  |
| for post 2012 Global | Emissions inventorization       | and Facilities EE program, Demand                   |
| Climate agreement    |                                 | Side Management programs, Transport                 |
| and Actions          |                                 | management etc                                      |

#### Table 4.5: Actions undertaken at City level $^{28}$

#### 4.2 Energy Consumption Profile of Coimbatore

#### Introduction

This section deals with the assessment of the energy consumption patterns in Coimbatore city. The identification of energy sources specific to each sector in Coimbatore i.e., Residential, Commercial, Industrial and Municipal is being dealt with as follows.

#### **Total Electricity Consumption in Coimbatore**

<sup>&</sup>lt;sup>28</sup> ICLEI SA-Local Governments for Sustainability-http://www.iclei.org/index.php?id=971

The main source of energy consumption in Coimbatore is electricity which is consumed in the residential, commercial, industrial as well as municipal sectors of the city. Electricity is generally used for lighting, cooling, heating and powering other appliances of general use in domestic sector. In commercial sector also, electricity is the main source of energy for lighting, cooling, heating and other commercial activities. There are a lot of industries in Coimbatore that use electricity for certain kinds of processes in their day to day work. Coimbatore is known for textile industry and electricity is the main source of energy for running those industrial units. In municipal sector, electricity is being used for maintaining certain services like - street lighting, water supply, sewage treatment plant and office buildings of the municipal corporation. The table below shows the total energy consumption for a period of five years in different sectors.

| Sector                                   | Electricity Consumption (Million kWh) |         |         |         |         |  |  |
|------------------------------------------|---------------------------------------|---------|---------|---------|---------|--|--|
| Sector                                   | 2006-07                               | 2007-08 | 2008-09 | 2009-10 | 2010-11 |  |  |
| Domestic                                 | 318.68                                | 239.69  | 446.73  | 473.52  | 379.34  |  |  |
| Commercial                               | 133.81                                | 91.87   | 170.17  | 187.60  | 150.56  |  |  |
| Industrial                               | 60.82                                 | 40.02   | 76.61   | 87.26   | 65.07   |  |  |
| Municipal Sector                         | 17.63                                 | 25.94   | 36.24   | 32.34   | 34.49   |  |  |
| Other Government &<br>Educational Sector | 4.91                                  | 3.89    | 7.11    | 4.03    | 1.57    |  |  |
| Total Electrical Energy<br>consumed      | 535.86                                | 401.41  | 736.87  | 784.76  | 631.04  |  |  |

Table 4.6: Sector-wise electricity consumption in Coimbatore

(Source: TNEB, Coimbatore 2012)

The domestic and commercial sectors in the city are the main consumers followed closely by the industrial sector. The city attained peak consumption last year with 784.76 million kWh.

#### Sector-Wise energy consumption in Community sector

#### **Domestic Sector** A.

The sources of fuel that find most usage in this sector are kerosene and LPG. While use of kerosene has seen a downward trend in Coimbatore, LPG usage has risen drastically as indicated by the data below.

| Table 4.7: Fuel consumption domestic sector in Coimbatore |         |          |          |          |  |  |
|-----------------------------------------------------------|---------|----------|----------|----------|--|--|
| Fuel                                                      | 2007-08 | 2008-09  | 2009-10  | 2010-11  |  |  |
| Kerosene (kL)                                             | 11501   | 12377    | 12368    | 11497    |  |  |
| LPG (MT)                                                  | 7888.8  | 38595.14 | 42903.34 | 46281.25 |  |  |

| Table 4.7. Fuel consumption domestic sector in Combatore | Table | 4.7: | Fuel | consum | otion ( | domestic | sector | in | Coimbatore |
|----------------------------------------------------------|-------|------|------|--------|---------|----------|--------|----|------------|
|----------------------------------------------------------|-------|------|------|--------|---------|----------|--------|----|------------|

Source: District Supply Officer, Coimbatore 2012

#### B. **Commercial Sector**

In the commercial sector, there is extensive usage of LPG and kerosene in hospitality enterprises. For companies in the transport sector, diesel and petrol are the main sources of fuel which are also used in the industrial sector. Following is the usage trend of these energy sources.

| Fuel           | 2007-08 | 2008-09 | 2009-10  | 2010-11  |
|----------------|---------|---------|----------|----------|
| Kerosene* (kL) | 7667    | 8251    | 8245     | 7665     |
| LPG* (MT)      | 415.2   | 6962.37 | 7729.647 | 8738.444 |
| Diesel (kL)    | 16722.7 | 19639.2 | 15096.6  | 17384.2  |
|                |         | 1 1     |          |          |

| Table 4.8: Fuel consu | nption commercial | sector in | Coimbatore |
|-----------------------|-------------------|-----------|------------|
|-----------------------|-------------------|-----------|------------|

\*commercial and industrial as segregation not available

(Source: District Supply Officer, Coimbatore; IOLC, HPCL, Coimbatore 2012)

#### C. Industrial Sector

Extensively used sources of fuel in industrial sector are petrol, diesel, kerosene and LPG. Following table lists the usage trends in Coimbatore over a period of four years.

#### Table 4.9: Fuel consumption industrial sector in Coimbatore

| Fuel        | 2007-08 | 2008-09 | 2009-10 | 2010-11 |
|-------------|---------|---------|---------|---------|
| Diesel (kL) | 33445.4 | 39278.4 | 30193.2 | 34768.4 |
| Petrol (kL) | 15344   | 17139   | 14601   | 15700   |

\*commercial and industrial as segregation not available (Source: District Supply Officer, Coimbatore; IOLC, HPCL, Coimbatore 2012)

#### D. Transport Sector

As a focal point of entry and exit into Tamil Nadu from Kerala and Karnataka, transport forms a major source of revenue and local employment. The fuel sources that the sector depends on are Diesel and Petrol. The usage trends in the past four years are listed below.

Table 4.10: Fuel consumption transport sector in Coimbatore

| Fuel        | 2007-08  | 2008-09  | 2009-10  | 2010-11  |
|-------------|----------|----------|----------|----------|
| Petrol (kL) | 61374    | 68558    | 58402    | 62802    |
| Diesel (kL) | 117058.9 | 137474.4 | 105676.2 | 121689.4 |
|             |          |          |          |          |

(Source: IOLC, HPCL, Coimbatore 2012)

#### E. Waste

The solid waste and effluents generated from the community are collected by the sanitary authorities as a part of the services. Coimbatore city lacks the basic infrastructure as of now for waste to energy generation capability and the Corporation has taken initiatives in order achieve this through scientific closure of dump sites and replaced them with four transfer stations with a design capacity to handle 650 tons of waste per day. The waste water treatment or sewerage treatment plant at Ukkadam which has a design capacity of 70 million liters per day (MLD) and currently is the only STP that serves the city. Following is a composition of the solid waste content in Coimbatore city and its chemical composition.

| Table 4.11: Physical Comp | osition of Solid Waste |
|---------------------------|------------------------|
|---------------------------|------------------------|

| Bio- degradable   | % of total |
|-------------------|------------|
| Organic/Bio-mass  | 71.70 %    |
| Woody mass        | 11.20 %    |
| Paper             | 2.30 %     |
| Non-Biodegradable | % of total |

| Plastics   | 6.90 % |
|------------|--------|
| Glass      | 2.20 % |
| Metal      | 0.10 % |
| Rubber     | 3.00 % |
| Leather    | 0.50 % |
| Synthetics | 2.10 % |
|            |        |

(Source: CMC, Coimbatore)

| Table 4.12: Chemical Composition of Solid Waste |        |  |
|-------------------------------------------------|--------|--|
| Parameters                                      | Values |  |
| Density (Kg/m3)                                 | 0.67   |  |
| Moisture                                        | 74.18% |  |
| Ph                                              | 7.03   |  |
| Total Organic Matter                            | 35.77% |  |
| Total Nitrogen as N                             | 1.17 % |  |
| Phosphorous as $P_2O_5$                         | 0.40 % |  |
| Potassium as K <sub>2</sub> O                   | 0.73 % |  |
| C:N Ratio                                       | 1:17.1 |  |
| Gross Calorific Value (Kcal/Kg)                 | 2369   |  |

(Source: CMC, Coimbatore 2012)

#### Table 4.13: Waste generated in Coimbatore

| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2007-08 | 2008-09 | 2009-10 | 2010-11 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|
| Solid Waste (MT/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 631.05  | 662.60  | 695.73  | 730.52  |
| $(\mathbf{C}_{1}, \mathbf{u}_{2}, \mathbf{v}_{2}, \mathbf{U}_{2}, U$ |         |         |         |         |

(Source: ICLEI data, 2012)

#### **Energy Consumption in Government sector**

The Corporation consumes energy through usage of electricity, fuels like petrol and diesel to execute and undertake the various activities under its portfolio of duties. The activities are mainly energy intensive are the power consumption in streetlights, water supply and illumination of Government buildings and equipments. Liquid fuels like petrol and diesel are mainly used to facilitate mobility of Municipal authorities and for transport of during maintenance and repair activities. Following is a broad breakdown of these activities.

#### A. Energy used in Street Lighting

There are approximately about 30,730 street lights within the Corporation limits. The Corporation's energy conservancy measures that resulted in replacement of incandescent bulbs to LED enabled street lights brought about 12% reduction in energy consumption charges to the Corporation. A similar conservancy measure by dimming of street lights late in the night and switching of alternate lights helped save 40 lakh units until 2011 and a further 86 lakh this year<sup>29</sup>. With new areas added under the Corporation's control, more such measures are anticipated to the street lighting system in these regions. With 80% of such measures already completed, the Corporation aims to accomplish 100% energy saving measures in its street lighting systems by 2016<sup>30</sup>. In 2010, the Corporation

<sup>&</sup>lt;sup>29</sup> Corporation's power conservancy measures yield dividends-

http://www.thehindu.com/news/cities/Coimbatore/article2720112.ece

<sup>&</sup>lt;sup>30</sup> Coimbatore City Development Plan (page 4)
consumed about 17927 kWh of energy Following is the breakdown of street lighting systems currently in place.

| Tuble III II bullet ingitte in |        |
|--------------------------------|--------|
| Street Lights                  | Number |
| Tube Lights                    | 4602   |
| Sodium Lamp                    | 25220  |
| High mast Lamp                 | 208    |
| Energy Saver Yes/No            | 700    |
| Total                          | 30730  |

| Tuble III II belove inglieb in combacore |
|------------------------------------------|
|------------------------------------------|

(Source: CMC, Coimbatore 2009)

In the Municipal sector, the usage of electricity is mainly for illumination purposes like street lighting as detailed above and also for lighting of municipal buildings and public buildings like stadiums, parks and hospitals and schools. Following is a detailed list of lighting equipments in use and also the places where electricity is used for lighting.

| Tuble 4.12: Migneing equipments and sites of usage |        |               |  |  |  |  |
|----------------------------------------------------|--------|---------------|--|--|--|--|
| Equipment                                          | Number | Total Wattage |  |  |  |  |
| 40 watts tube lights                               | 22925  | 917           |  |  |  |  |
| 70 watts SV lamps                                  | 21474  | 1503          |  |  |  |  |
| 250 watts SV lamps                                 | 14998  | 3750          |  |  |  |  |
| 400 watts SV lamps fittings                        | 113    | 45.2          |  |  |  |  |
| 250 watts MHL fittings                             | 307    | 77            |  |  |  |  |
| 400 watts MHL fittings                             | 534    | 214           |  |  |  |  |
| 2*24 watts T-5 Fitting                             | 534    | 26            |  |  |  |  |
| 5*24 watts T- 5 Fitting                            | 194    | 23.3          |  |  |  |  |
| 150 watts SV lamps                                 | 259    | 39            |  |  |  |  |
| 36 watts CF lamps                                  | 358    | 13            |  |  |  |  |
| 72 watts CF Lamps                                  | 75     | 5.4           |  |  |  |  |
| 250 watts CF lamps                                 | 3358   | 840           |  |  |  |  |
| 4*24 watts CF lamps                                | 41     | 2             |  |  |  |  |
| High mast (400 watts SVL fittings)                 | 16     | 6.4           |  |  |  |  |

#### Table 4.15: Lighting equipments and sites of usage

(Source: ICLEI 2012)

Table 4.16: Energy consumed by Street Lights in Coimbatore

|                  | 2006-             | 2007              | 2007-2            | 2008              | 2008-2            | 2009              | 2009-2            | 010               |
|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                  | Quantity<br>(kWh) | Rate<br>(in lacs) |
| Street<br>Lights | 11,382.73         | 375.63            | 22,073.64         | 728.43            | 15,882.42         | 524.12            | 17,972.73         | 593.10            |

(Source: ICLEI 2012)

#### B. Energy used in Water Supply

Water in Coimbatore is scarce and Monsoon dependant. Due to infrequent rains and delay of the Monsoon, the city has been battling water issues since the past few years. There are currently two major schemes that convey water to the city. One of these, Pilloor scheme is not facilitated by gravity like the other Siruvani water scheme and hence requires use of pumping equipments which utilize energy. With a proposal of expansion of the conveying canals under this scheme, the electricity consumption under this scheme is expected to rise. Following is the data available with the Corporation provided to ICLEI. The data also indicates the electricity consumed by STP stations under Municipal control.

| 14510 1111                   | · 2005 0          | onounio           | <u>u 29 11 u 0</u> | or oupp           | .,                | ibacoro           |                   |                   |
|------------------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                              | 2006-2            | 007               | 2007-              | 2008              | 2008-2            | 2009              | 2009-20           | 010               |
|                              | Quantity<br>(kWh) | Rate<br>(in lacs) | Quantity<br>(kWh)  | Rate<br>(in lacs) | Quantity<br>(kWh) | Rate<br>(in lacs) | Quantity<br>(kWh) | Rate<br>(in lacs) |
| Water<br>supply;<br>Sewerage | 7,283.03          | 240.34            | 9,968.18           | 328.95            | 9615.76           | 317.32            | 7,437.27          | 245.43            |
|                              |                   |                   |                    |                   |                   |                   |                   |                   |

Table 4.17: Energy consumed by Water Supply in Coimbatore

(Source: ICLEI 2012)

## C. Energy used in lighting of Corporation Buildings

Corporation ensures illumination of Government buildings and other public venues like stadiums and parks etc, besides street lights. Following are the sites of electricity usage by the Corporation of Coimbatore.

 Table 4.18: Site of electricity usage by Corporation

| Government buildings                                    | Number |
|---------------------------------------------------------|--------|
| No of municipal office buildings                        | 4      |
| Stadiums owned by the corporation                       | 2      |
| Parks, recreation centers maintained by the corporation | 52     |
| Hospitals, clinics maintained by the corporation        | 38     |
| Schools maintained by the corporation                   | 98     |
| Other buildings                                         | 174    |
|                                                         |        |

(Source: ICLEI, 2012)

Following is the data regarding electricity usage.

|                               | 2006-             | 2007              | 2007-2            | 2008              | 2008-2            | 2009                 | 2009-2            | 2010                 |
|-------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|----------------------|
|                               | Quantity<br>(kWh) | Rate<br>(in lacs) | Quantity<br>(kWh) | Rate<br>(in lacs) | Quantity<br>(kWh) | Rate<br>(in<br>lacs) | Quantity<br>(kWh) | Rate<br>(in<br>lacs) |
| Building<br>and<br>Facilities | 1935.64           | 106.46            | 2523.09           | 138.77            | 3183.64           | 175.1                | 2716.18           | 149.39               |

Table 4.19: Electricity used in Corporation buildings and facilities

(Source: ICLEI 2012)

#### **D.** Energy used in Corporation Transport

Petrol and diesel are the main fuels for powering the Corporation vehicles that help in performance of its duties. Currently, the Corporation has 181 vehicles of which majority run on diesel. In addition, the Corporation also maintains 160 vehicles that facilitate the waste collection in the city. These usually run on diesel. Following table details the Corporation vehicles.

 Table 4.20: Corporation vehicle characteristics

 No. of Vehi

| Type of Vehicles                      |        | No. of Vehicles |        |
|---------------------------------------|--------|-----------------|--------|
| Type of venicles                      | Petrol | Diesel          | Others |
| Car                                   | 3      | -               | -      |
| Auto-rickshaw                         | 15     | -               | -      |
| Light-duty vehicles                   | -      | 97              | -      |
| Heavy-duty vehicles                   | -      | 64              | -      |
| Omni van/Ambulance                    | 2      | -               | -      |
| Waste collecting                      | -      | 160             | -      |
| vehicles                              |        |                 |        |
| Total                                 | 20     | 321             | -      |
| Waste collecting<br>vehicles<br>Total | - 20   | 160<br>321      | -      |

(Source: ICLEI 2012)

The data from the Corporation regarding expenses over fuel usage was obtained in a consolidated form without clear break-up between usage of petrol and diesel. Following are the details of the same.

| Table Har corporation fomero emaracteristica |
|----------------------------------------------|
|----------------------------------------------|

|                        | 2006-2007            | 2007-2008            | 2008-2009            | 2009-2010            |
|------------------------|----------------------|----------------------|----------------------|----------------------|
|                        | Rate<br>(Rs in Lacs) | Rate<br>(Rs in Lacs) | Rate<br>(Rs in Lacs) | Rate<br>(Rs in Lacs) |
| Light-duty<br>vehicles | 16.64                | 48.28                | 326.73               | 121.96               |
| Heavy duty<br>vehicles | 233.95               | 328.94               | 243.66               | 530.01               |
| Total                  | 250.59               | 377.22               | 570.39               | 651.97               |

In 2010, the fuel used for 161 diesel vehicles and 20 petrol vehicles, cost the Corporation about 652 lacs. Based on this, fuel usage has been evaluated as shown in the table below:

| Fuel type | Total cost (Rs in<br>Lacs) | Cost of fuel per litre<br>(Rs/Litre) | Fuel Usage (kL) |
|-----------|----------------------------|--------------------------------------|-----------------|
| Petrol    | 38.25                      | 51.59*                               | 741.5           |
| Diesel    | 614.75                     | 37.78*                               | 1627.2          |

Table 4.22: Fuel usage by Corporation vehicles

#### 4.3 GHG Emissions profile of Coimbatore

Based on this inventory, the total emissions from the city for the year 2010-2011 were 1.469 million tonnes of carbon dioxide equivalents ( $CO_2e$ ) which contributed to about 99% of the total emissions from the city indicating carbon efficiency of the Corporations activities as a result of the various efficiency measures undertaken by it in the previous years.

#### **Community level GHG emissions**

The total emissions from the Community sector in Coimbatore is 1,469,552.33 tCO<sub>2</sub>e

| Sector                          | Equiv. CO <sub>2</sub> tonnes | % of total emissions |  |  |  |
|---------------------------------|-------------------------------|----------------------|--|--|--|
| Residential                     | 458,043.56                    | 31.17                |  |  |  |
| Commercial                      | 195,627.70                    | 13.31                |  |  |  |
| Industrial                      | 198,192.48                    | 13.49                |  |  |  |
| Transport                       | 496,430.96                    | 33.78                |  |  |  |
| Waste                           | 121,257.63                    | 8.25                 |  |  |  |
| Total Community level Emissions | 1,469,552.33                  | 100.00               |  |  |  |

 Table 4.23: Community level Carbon Emissions (tCO2e)



Figure 4.2: Coimbatore city Carbon Emissions (2010-2011)

#### Residential

The residential sector GHG emission was 458043.56 tonnes (31.17 %) to total emissions from community level activities in 2010-11. The major contribution is coming from electricity consumption; it has 63.31 % share of total residential emissions. The next major

source of emissions after electricity is due to LPG consumption. A small fraction comes from Kerosene consumption used for several purposes like kerosene lamps, cooking etc. The Kerosene consumption contributes less than 3 % to the total residential emissions. The details of residential emissions are given below.

| Table 4.24. Residential diferinouse das Emissions (2010-11) |                               |                          |
|-------------------------------------------------------------|-------------------------------|--------------------------|
|                                                             | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
| Electricity                                                 | 289,975.43                    | 63.31                    |
| LPG                                                         | 138,338.05                    | 30.20                    |
| Kerosene                                                    | 29,730.08                     | 6.49                     |
| Subtotal Residential                                        | 458,043.56                    | 100.00                   |

Table 4.24: Residential Greenhouse Gas Emissions (2010-11)

#### Commercial

The commercial sector GHG emission was 195627.7 tonnes (13.31%) to total emissions from community level activities in 2010-11. The major contribution is coming from electricity consumption; it has 59 % share of total commercial emissions. The next major source of emissions after electricity is due to diesel consumption and its share in total emissions is just about 3.4 %. The source wise equiv  $CO_2$  details are given below:

|                     | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|---------------------|-------------------------------|--------------------------|
| Electricity         | 115,227.08                    | 58.90                    |
| Diesel              | 49,553.26                     | 25.33                    |
| LPG                 | 17,030.91                     | 8.71                     |
| Kerosene            | 13,816.46                     | 7.06                     |
| Subtotal Commercial | 195,627.70                    | 100.00                   |

Table 4.25: Commercial Greenhouse Gas Emissions (2010-11)

#### Industrial

The industrial sector GHG emission was 198192.48 tonnes (13.48%) to total emissions from community level activities in 2010-11. The major contribution is from diesel consumption; it has 50 % share of total industrial emissions. The next major source of emissions after diesel is due to electricity consumption followed by petrol. Their share in total emissions however is just about 3.36% and 2.44% respectively. The source wise equiv  $CO_2$  details are given below:

|                     | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|---------------------|-------------------------------|--------------------------|
| Diesel              | 99106.52                      | 50.01                    |
| Electricity         | 49,601.06                     | 25.03                    |
| Petrol              | 36072.64                      | 18.20                    |
| LPG                 | 7405.23                       | 3.74                     |
| Kerosene            | 6007.04                       | 3.03                     |
| Subtotal Industrial | 198192.48                     | 100.00                   |

#### Transport

The transportation sector GHG emission was 496430.96 tonnes (33.78%) to total emissions from community level activities in 2010-11. The major contribution is from diesel consumption; it has 69% share of total transport emissions. The next major contributor to emissions after diesel is due petrol whose consumption is on the rise. Its share in total emissions is 31% of the total transport emissions. Petrol and diesel together contribute to 34% of the total GHG emissions from the city.

|                    | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|--------------------|-------------------------------|--------------------------|
| Diesel             | 340,683.35                    | 68.63                    |
| Petrol             | 155,747.61                    | 31.37                    |
| Subtotal Transport | 496,430.96                    | 100.00                   |

#### Waste

The metropolitan of Coimbatore is served by 4 transit stations for solid waste generated by the city at the rate of 730.52 MT/day. The following table details the contribution to GHG emissions by this waste that is disposed off in a managed landfill maintained at different locations in the city. The data obtained from the Corporation was latest until 2010.

| Table  | 4.28: | Waste | Greenhouse | Gas | Emissions  | (2009-10) |
|--------|-------|-------|------------|-----|------------|-----------|
| 1 4010 |       |       |            | ~~~ | 2111001010 | (======,  |

|                       | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|-----------------------|-------------------------------|--------------------------|
| Municipal Solid Waste | 121,257.63                    | 100                      |
| Subtotal Waste        | 121,257.63                    | 100                      |

#### **Government Level GHG emissions**

The total emissions arising from Corporation activities are about 6415.95 tonnes of CO<sub>2</sub>.

| Sector                 | Equiv. CO <sub>2</sub> tonnes | % of total emissions |  |
|------------------------|-------------------------------|----------------------|--|
| Facilities             | 19.42                         | 0.30                 |  |
| Buildings              | 2.07                          | 0.03                 |  |
| Transport              | 6,394.45                      | 99.67                |  |
| Total Government level |                               |                      |  |
| Emissions              | 6,415.94                      | 100.00               |  |

Table 4.29: Government level Carbon Emissions (tCO<sub>2</sub>e)

#### Facilities

Facilities like illumination of public precincts through street lights and traffic lights are some of the service that the Corporation is responsible and that generates greenhouse gasses. Water supply and sewerage pumping are other activities that cause emissions. Following table details the activities and the emissions arising from each. The data from Corporation is from 2009-10 and was the latest available.

|                     | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|---------------------|-------------------------------|--------------------------|
| Street lighting     | 13.71                         | 70.63                    |
| Water supply        | 5.70                          | 29.37                    |
| Subtotal Facilities | 19.42                         | 100.00                   |

Table 4.30: Facilities Greenhouse Gas Emissions (2009-10)

#### **Buildings**

Corporation buildings and the equipments therein also become a source of GHG emissions when powered through electricity. The following table details the relevant emissions from this activity.

## **Buildings Greenhouse Gas Emissions (2009-10)**

|                    | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|--------------------|-------------------------------|--------------------------|
| Illumination       | 2.07                          | 100                      |
| Subtotal Buildings | 2.07                          | 100                      |

#### Transport

In Coimbatore, the emissions due to Corporation owned transport are more than the emissions from facilities or buildings. Transport owned by the Corporation is responsible for almost 99% of the emissions from this sector as detailed in the table below. Of these, diesel which serves as fuel for most Corporation vehicles contributes to about 71% of the emissions from Corporation owned transport.

 Table 4.31: Transport Greenhouse Gas Emissions (2009-10)

 Ening

|                    | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|--------------------|-------------------------------|--------------------------|
| Petrol             | 1,838.90                      | 28.76                    |
| Diesel             | 4,555.55                      | 71.24                    |
| Subtotal Transport | 6,394.45                      | 100.00                   |

## 4.4 Suggested Low Carbon Action plans

#### **Renewable energy strategies**

The main objective of this chapter is to identify available renewable energy resources in Coimbatore city and carry out techno-economic feasibility of different renewable energy options for residential, commercial, industrial and municipal sector and making a priority listing of the options.

A renewable energy resources assessment has been done to identify the potential renewable energy sources for the Coimbatore city. This includes assessment of solar radiation, wind power density and availability, biomass resources and municipal/industrial wastes etc. The strategy has been prepared for each sector identifying most techno economically viable renewable energy options considering wide range of potential consumers in the particular sector. An implementation target for development of solar city project in 5 years period has been set with an objective to meet at least 5% energy consumption from renewable energy on completion of the project in Coimbatore with substantial decrease in Carbon emissions from all sectors in the city.

For the residential sector, potential for introducing the following renewable energy devices has been worked out based on present energy use pattern of the residents, economic level, availability of such products and economic feasibility.

- (i) Solar Water Heaters
- (ii) Solar Cooker
- (iii) Solar Lanterns
- (iv) Solar Home System
- (v) Solar PV system for Home Inverters
- (vi) Small Wind Turbines
- (vii) Solar PV Wind Hybrid Systems

Commercial and Institutional Sector has been divided in to four broad categories as below and these categories again sub divided into further categories based on their capacity and functional differences.

- (i) RE Strategy for Hotels
- (ii) RE Strategy for Restaurants
- (iii) RE Strategy for Hospitals
- (iv) RE Strategy for Educational Institutes

On the spot assessments have been carried out visiting each of these sub categories to identify present energy demand, energy and fuel used, load shedding occurs, standby power supply provision, space available for installation of solar arrays and collectors etc. Based on the site visit and energy demand assessment, preliminary design/sizing of appropriate renewable energy devices have been worked out for each category establishment. An indicative budgetary financial implication, energy savings, payback period and GHG emission reduction has been estimated for each renewable energy option that has been suggested. Based on the energy utilization pattern, the following renewable energy systems have been recommended followed by energy efficiency measures in this sector.

- (i) Solar Water Heaters for all hotels, hospitals, restaurants & residential institutes
- (ii) Solar Steam cooking for hostels and restaurants
- (iii) Solar PV system for captive use and peak load reduction
- (iv) Biogas system from food waste
- (v) Solar PV wind hybrid systems
- (vi) Small Wind turbines for institutional campuses

Industrial sector is broadly divided into five categories. Suitable renewable energy technologies have been suggested for each of the category.

| (i)           | Metal products              | (35%) |
|---------------|-----------------------------|-------|
| ( <b>ii</b> ) | Textile & textile products  | (19%) |
| (iii)         | Machinery and Equipments    | (15%) |
| (iv)          | Food products and beverages | (4%)  |

| ( <b>v</b> ) | Rubber and Plastics            | (3%)  |
|--------------|--------------------------------|-------|
| (vi)         | Service Industries             | (12%) |
| (vii)        | Other Manufacturing Industries | (12%) |

The following renewable energy systems have been proposed for the industrial sector based on industrial process and type and quantum of energy demand for these industries.

- (i) Solar Water Heaters for process heat and boiler feed water preheating
- (ii) Solar Steam generating system for process heating
- (iii) Solar PV system for captive use and peak load reduction
- (iv) Biogas system for food processing industries

Government & Municipal Sector is divided into three categories and options for appropriate renewable energy technologies have been recommended based on the assessment made on each category of the sector.

- (i) Government and Municipal Corporation Office Buildings
- (ii) Outdoor lighting for public places like parks, bus shelters, monuments etc
- (iii) Outdoor lighting Road safety- Street light, road blinkers, road studs etc

#### 4.4.1 Renewable Energy Resource Assessment

A preliminary assessment has been done for solar, biomass resources and energy recovery potential from municipal solid waste and sewage treatment plant. While biomass data is for entire Coimbatore district, there is no hydro potential in the city. A pre feasibility study on wind potential in Coimbatore City and its surrounding area has been conducted by ICLEI-SA during 2011 under Urban Climate Project. A summary on wind potential, site classification and suitable types of wind turbine for Coimbatore city has been incorporated in this report.

#### **Solar Radiation**

Coimbatore (76° E and 11° N) receives good amount of solar radiation with an annual average of 4.98 kWh/  $m^2$ /day. Following is the typical solar insolation data for Coimbatore for an entire year.

| Table 4.32: Monthly A   | veraged Insulation | $(kWh/m^2/day)$ | incident on a |
|-------------------------|--------------------|-----------------|---------------|
| horizontal surface in ( | Coimbatore         |                 |               |

| Source         | Jan  | Feb  | Mar  | Apr | May  | Jun | Jul | Aug | Sep  | Oct | Nov | Dec | Annual |
|----------------|------|------|------|-----|------|-----|-----|-----|------|-----|-----|-----|--------|
| NASA SSE       | 4.62 | 5.5  | 6.22 | 6.8 | 6.59 | 5   | 3.9 | 3.7 | 4.4  | 5.1 | 4.8 | 4.5 | 5.09   |
| Satellite data |      |      |      |     |      |     |     |     |      |     |     |     |        |
| MNRE Solar     | 4.49 | 5.34 | 6.09 | 6.7 | 6.55 | 5.2 | 4.1 | 4.1 | 4.87 | 5.2 | 4.5 | 4.3 | 5.09   |
| Radiation      |      |      |      |     |      |     |     |     |      |     |     |     |        |
| Handbook-      |      |      |      |     |      |     |     |     |      |     |     |     |        |
| 2008           |      |      |      |     |      |     |     |     |      |     |     |     |        |



Figure 4.3: Annual Solar Radiation Profile of Coimbatore

#### Wind Energy Potential

The state of Tamil Nadu has one of the best wind potentials in the country. The total identified wind power potential is  $5374 \text{ MW}^{31}$  and the total installed wind power capacity is about 5533MW as on February 2011. Coimbatore district of Tamil Nadu has very good wind energy potential. There are 12 wind monitoring mast installed all over the district to monitor wind power potential and all of them shows more that  $200W/m^2$  mean annual wind power density which is considered as good wind power potential. The table below shows mean annual wind power density measured in the different wind mast across the district.

| Site Name     | Lati | tude | Long | itude | Elevation | Mean annual                          | WPD at      | WPD at          |
|---------------|------|------|------|-------|-----------|--------------------------------------|-------------|-----------------|
|               | Deg  | Min  | Deg  | Min   | in meters | wind speed at<br>20m/25m in<br>m/sec | 20m/<br>25m | 50m in<br>W/sqm |
| Andhiyur      | 10   | 36   | 77   | 11    | 380       | 5.2                                  | 177         | 271             |
| Arasampalayam | 10   | 51   | 77   | 3     | 370       | 5.5                                  | 195         | 291             |
| Edayarpalayam | 10   | 55   | 77   | 7     | 445       | 6.1                                  | 273         | 398             |
| Kethanur      | 10   | 54   | 77   | 17    | 403       | 5.7                                  | 259         | 376             |
| Mettukadai    | 10   | 52   | 77   | 23    | 350       | 4.9                                  | 184         | 281             |
| Myvadi        | 10   | 36   | 77   | 19    | 341       | 5.3                                  | 251         | 376             |
| Pongalur      | 10   | 58   | 77   | 21    | 388       | 5.2                                  | 213         | 309             |
| Poolavadi     | 10   | 44   | 77   | 17    | 321       | 5.7                                  | 283         | 445             |
| Poosaripatti  | 10   | 40   | 77   | 7     | 380       | 5.2                                  | 168         | 254             |
| Pushpathur    | 10   | 33   | 77   | 25    | 340       | 4.3                                  | 128         | 254             |
| Sultanpet     | 10   | 52   | 77   | 11    | 380       | 5.1                                  | 203         | 206             |
| Thannirpandal | 10   | 57   | 77   | 19    | 400       | 4.9                                  | 216         | >330            |

Table 4.33: Designated wind sites near Coimbatore city

Source: http://www.windpowerindia.com/statwind2.asp

<sup>&</sup>lt;sup>31</sup> Indian Wind Energy Outlook 2011-http://www.indianwindpower.com/pdf/iweo\_2011\_lowres.pdf

#### Wind data for Coimbatore City

The monthly average wind speed data from Atmospheric science data center, NASA and Peelamedu Airport are presented below. The same wind speed data is represented graphically in the table below. It can be clearly seen that there is high level of similarity in the two data set and the wind speeds are at highest in May-September.

| Table 4.54. Will speed data |                                                                                         |                                                                                                      |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| Months                      | Monthly Averaged Wind<br>Speed At 10 m above The<br>Surface Of The Earth –<br>NASA data | Monthly Averaged Wind<br>Speed At 10 m above The<br>Surface Of The Earth –<br>Peelamedu airport data |  |  |  |  |
|                             | m/s                                                                                     | m/s                                                                                                  |  |  |  |  |
| January                     | 3.12                                                                                    | 1.90                                                                                                 |  |  |  |  |
| February                    | 2.69                                                                                    | 2.10                                                                                                 |  |  |  |  |
| March                       | 2.81                                                                                    | 2.50                                                                                                 |  |  |  |  |
| April                       | 2.76                                                                                    | 2.80                                                                                                 |  |  |  |  |
| May                         | 3.26                                                                                    | 3.90                                                                                                 |  |  |  |  |
| June                        | 4.72                                                                                    | 5.30                                                                                                 |  |  |  |  |
| July                        | 4.54                                                                                    | 5.30                                                                                                 |  |  |  |  |
| August                      | 4.29                                                                                    | 5.10                                                                                                 |  |  |  |  |
| September                   | 3.33                                                                                    | 4.20                                                                                                 |  |  |  |  |
| October                     | 2.57                                                                                    | 2.50                                                                                                 |  |  |  |  |
| November                    | 2.74                                                                                    | 1.60                                                                                                 |  |  |  |  |
| December                    | 3.47                                                                                    | 1.80                                                                                                 |  |  |  |  |
| Annual Average              | 3.12                                                                                    | 3.25                                                                                                 |  |  |  |  |

| Table | 4.34: | Wind | speed | data |
|-------|-------|------|-------|------|
|-------|-------|------|-------|------|



Figure 4.4: Comparison of wind speed data

#### Waste generation<sup>32</sup>

About 600 MT of waste is generated in Coimbatore daily with the major generation points being households, hotels, restaurants, industries, hospitals, market places, slums, bus-stands and community halls. Most of city's waste comes from domestic and commercial sectors collected in dustbins around the city and transported via lorries, carts or tractors to transit stations located at Gandhipuram, Peelamedu, Ondiputhur, Ukkadam and Vellaluru. Currently, the transfer stations at Peelamedu and Ukkadam have a waste handling



Vellaluru Compost yard

capacity of 200 tonnes per day (TPD) while transit stations at Ondiputhur and Gandhipuram operate at 125 TPD. With increasing waste generation from the city in future, the four stations are expected to run at their optimal capacities of 650 TDP for which each has been designed.

| <b>Transit Station</b> | <b>Operating capacity</b> | % of design capacity (650 TPD) |
|------------------------|---------------------------|--------------------------------|
| Gandhipuram            | 125                       | 19.23                          |
| Ukkadam                | 125                       | 19.23                          |
| Peelamedu              | 200                       | 30.76                          |
| Ondiputhur             | 200                       | 30.76                          |

#### Liquid Waste from Sewage Treatment Plant

The Sewerage Treatment at Ukkadam serves as the sole STP under Coimbatore Corporation. The STP has been designed to operate at a capacity of 70 MLD. Currently operating at less than 30% of its design capacity, the STP is estimated to suffice the city's needs for another 15 years. The plant has been constructed based on Sequential Bach Reactor (SBR) process which has a stringent quality standard known for rendering very low fecal Coli form and turbidity levels. It has decided to adopt the very same technology at the Nanjundapuram sewage treatment plant, yet to become operational.

#### **Biomass Resources**<sup>33</sup>

Coimbatore district has agro, forest and wasteland based biomass reserve and has one the highest biomass potential within the state. The total average crop production in 2000-04 was 904 kT/year. During the same period biomass generated was about 823 kT/year and

<sup>&</sup>lt;sup>32</sup> Solid Waste Management report-Coimbatore Municipal Corporation-www.indiaurbanportal.in/pdf/swm\_sess2\_1.pdf

<sup>&</sup>lt;sup>33</sup> Biomass Resource Atlas India-http://lab.cgpl.iisc.ernet.in/atlas/Default.aspx

surplus was 372 kT/year. The city had a power generation capacity of 51 MWe during this time which was the  $10^{th}$  highest in production of power from biomass.

## **RE Strategy for Residential sector**

With projected population of 28.32lakh (2016), the residential sector is the highest energy consumer in non-transport activities in the Coimbatore city. Different renewable energy options have been proposed based on technology available and economic feasibility. Only those renewable energy devices are recommended which are technically proven, commercially available and attractive in terms of financial benefit from energy savings.

#### (i) Installation of Solar Water Heating System

The State government offers subsidies for installation of SWH on VVIP quarters and residences and the national subsidy from MNRE covers 30% of the capital costs of domestic and commercial users. The target for residential users that are currently using geysers has been set at 80%. Such an introduction would save up to 41.9 MU in 5 years. Cost implication and energy savings potential is presented in the table below.

|                                                       | Tuble 1.00. I otential for owing instantion in compatible only |        |  |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------|--------|--|--|--|--|
| Single Household                                      |                                                                | Unit   |  |  |  |  |
| Average size of domestic SWH (2 sqm collector area)   | 100/125                                                        | LPD    |  |  |  |  |
| Total energy saved per year                           | 1575                                                           | kWh    |  |  |  |  |
| Indicative cost of installation                       | 25000                                                          | INR    |  |  |  |  |
| MNRE subsidy @3300.00 per m <sup>2</sup>              | 6600                                                           | INR    |  |  |  |  |
| Cost of energy savings                                | 5513                                                           | INR    |  |  |  |  |
| Payback period                                        | 3                                                              | Years  |  |  |  |  |
| Target for entire city                                |                                                                | Unit   |  |  |  |  |
| Total Residential household                           | 312983                                                         | Nos.   |  |  |  |  |
| Total Residential household after being accounted for |                                                                |        |  |  |  |  |
| in apartments                                         | 302183                                                         |        |  |  |  |  |
| Residential household using geysers                   | 11%                                                            |        |  |  |  |  |
| Target to replace electric geyser by SWH in 5 years   | 80%                                                            |        |  |  |  |  |
| Average size of domestic SWH (2 sqm collector         |                                                                |        |  |  |  |  |
| area)                                                 | 100/125                                                        | LPD    |  |  |  |  |
| Number of SWH to be installed in five years           | 26592                                                          | Nos.   |  |  |  |  |
| Total collector area in sqm                           | 53184                                                          | Sqm    |  |  |  |  |
| Total energy saved in five years                      | 41.9                                                           | MU     |  |  |  |  |
| Indicative cost of installation                       | 6648.03                                                        | Lakh   |  |  |  |  |
| MNRE subsidy @Rs.3300.00 per sqm                      | 1755.08                                                        | Lakh   |  |  |  |  |
| Cost of energy savings                                | 1465.89                                                        | Lakh   |  |  |  |  |
| Payback period                                        | 3                                                              | years  |  |  |  |  |
| Emission reduction per year                           | 33925                                                          | Tonnes |  |  |  |  |

Table 4.35: Potential for SWHs installation in Coimbatore City

## (ii) Use of Solar cookers (Box and dish type)

Both box type solar cooker and dish type solar cooker can be promoted in the urban areas. Box type solar cooker is an ideal device for domestic cooking during most of the year, except for the monsoon season and cloudy days. It however cannot be used for frying or chapatti making. It is durable and simple to operate. On the other hand, dish type solar cooker can be used for indoor cooking. The stagnation temperature at the bottom of the cooking pot could be over  $300_{\circ}$ C depending upon the weather conditions. The temperatures attained with this cooker are sufficient for roasting, frying and boiling. Regular use of a box type solar cooker may save 3-4 LPG cylinders per year. The use of solar cooker to its full capacity may result in savings up to 10 LPG cylinders per year at small establishments. A target of 15% in the domestic sector could save 14.33 MU of energy that occurs with use of a typical LPG cylinder. Considering the specific emission value of 0.24 per kWh per kg of CO<sub>2</sub>, the emissions reduction of about 3440 tonnes can be brought about in 5 years. Cost implication and energy savings potential is presented in the table below.

|                              |                  | 0011104 |
|------------------------------|------------------|---------|
| Calorific Value of LPG       | 12500            | kcal/kg |
|                              | 1 kcal= 0.001163 | kWh     |
|                              | 14.54            | kWh/kg  |
| I Domestic Gas Cylinder      | 14               | kg      |
|                              | 203.53           | kWh     |
| Specific emission per kWh Kg | g CO2 0.24       |         |

| Solar Cooker for Residential use                                  |        | Unit   |
|-------------------------------------------------------------------|--------|--------|
| Total Residential household                                       | 312983 | Nos.   |
| Household having facility to install a solar cooker <sup>34</sup> | 30%    |        |
| Target for introducing of solar cooker in 5 years <sup>35</sup>   | 15%    |        |
| Number of Solar Cooker to be installed in 5 years plan            | 14084  | Nos.   |
| Average savings of LPG domestic cylinder per year per solar       | 5      | Nos.   |
| cooker (14kg)                                                     |        |        |
| Total LPG saved in five years                                     | 985896 | kg     |
| Total energy saved in five years                                  | 14.33  | MU     |
| Indicative cost of installation (75% box type & 25% SK-14)        | 369.71 | Lakh   |
| MNRE subsidy for solar cooker @30%                                | 110.91 | Lakh   |
| Cost of energy savings                                            | 246.47 | Lakh   |
| Payback period                                                    | 1.05   | years  |
| Emission reduction in five years                                  | 3440   | Tonnes |

#### (iii) Solar lanterns to replace kerosene lamps/ candles

The use of kerosene lanterns is fairly considerable in Coimbatore. The emissions reduction that can be brought about by the replacement of kerosene/candles with solar lanterns contributes to about 0.3% towards the overall reduction target of 15% in conventional energy demand. Nevertheless, this replacement brings about emissions reduction in lieu of 335 tonnes of  $CO_2$  within a mere 5 year period. The relevant techno-commercial details are provided in the table below.

#### Table 4.37: Introducing solar lanterns in Coimbatore City

| Density of kerosene         | 0.7782   |         |
|-----------------------------|----------|---------|
| Calorific Value of Kerosene | 11110    | kcal/kg |
| 1 kcal=                     | 0.001163 | kWh     |

<sup>34</sup> Based on ICLEI Survey

<sup>35</sup> ICLEI Analysis

| Single Household                                 |        | Unit   |
|--------------------------------------------------|--------|--------|
| Capacity of residential Solar Home System        | 10     | Wp     |
| Number lights per Solar Home System              | 1      | Nos.   |
| Number of Kerosene lamp replaced by SL           | 1      | Nos.   |
| Consumption of kerosene per lanterns/month       | 3      | Liters |
| Cost of kerosene per liter in the market         | 20     | INR    |
| Cost of kerosene per year per household          | 720    | INR    |
| Indicative cost of installing a SL               | 3000   | INR    |
| MNRE subsidy @Rs.81.00 per Wp                    | 810    | INR    |
| Payback period when replacing the kerosene lamps | 3.0    | years  |
| Target for entire city                           |        | Unit   |
| Total Residential household                      | 312983 | Nos.   |
| Residential household use kerosene lamps         | 8%     |        |
| Target to replace kerosene lamp in 5 years       | 15%    |        |
| Number of SL to be installed in 5 years plan     | 3662   | Nos.   |
| Total kerosene lamp replaced                     | 3662   | Nos.   |
| Indicative cost of installation                  | 109.86 | Lakh   |
| Kerosene saved                                   | 131828 | Litres |
| Savings in terms of Electricity                  | 1.33   | MU     |
| Cost of kerosene savings                         | 26.37  | Lakh   |
| MNRE subsidy @Rs.81.00 per Wp                    | 29.66  | Lakh   |
| Payback period                                   | 3.0    | years  |
| Emission reduction per year                      | 335    | Tonnes |

#### (iv) Use Solar Home Systems (SHS)

A Solar Home System is a fixed indoor lighting system and consists of solar PV module, battery and balance of systems. Capacity of such system could be of 18Wp, 37Wp and 74Wp for different configuration. The luminaries used in the above systems comprise compact fluorescent lamp (CFL) of 7 W / 9 W / 11 W capacities respectively. The fan is of DC type with less than 20 W rating. One Battery of 12 V, 40 / 75 Ah capacity is also provided with SPV modules of 37Wp / 74Wp as required. The system will work for about 4 hours daily, if charged regularly. The Solar Home Lighting systems have been proposed to replace kerosene lamps used by 8% population in Coimbatore Corporation area during load shedding hours. A 74Wp Solar Home System can replace 3-4 kerosene lamps with 4-5 hours backup hence replacing entire need of kerosene, which is estimated at an average of 13 litres per month per household. If a 20% replacement target is considered within the next 5 years, then energy savings of 8 MU result and emissions reductions are expected to be 1950 tonnes in 5 years. The potential of kerosene replacement with Solar Home Systems and financial implication thereon is indicated in the table below.

| Table 4.38: Introducing solar home system in Coimbatore City |       |        |  |  |  |  |
|--------------------------------------------------------------|-------|--------|--|--|--|--|
| Single Household                                             | Unit  |        |  |  |  |  |
| Capacity of residential Solar Home System                    | 74    | Wp     |  |  |  |  |
| Number lights per Solar Home System                          | 4     | Nos.   |  |  |  |  |
| Number of Kerosene lamp replaced by SHS                      | 4     | Nos.   |  |  |  |  |
| Consumption of kerosene per household/month                  | 13    | Litres |  |  |  |  |
| Cost of kerosene per litre in the market                     | 20    | INR    |  |  |  |  |
| Cost of kerosene per year per household                      | 3144  | INR    |  |  |  |  |
| Indicative cost of installing a SHS                          | 16000 | INR    |  |  |  |  |

- -

| Single Household                                         |        | Unit   |
|----------------------------------------------------------|--------|--------|
| MNRE subsidy @Rs.81.00 per Wp                            | 5994   | INR    |
| Payback period when replacing the kerosene lamps         | 3.2    | years  |
| Target for entire city                                   |        | Unit   |
| Total Residential household                              | 312983 | Nos.   |
| Residential household use kerosene lamps <sup>36</sup>   | 8%     |        |
| Target to replace kerosene lamp in 5 years <sup>37</sup> | 20%    |        |
| Number of SHS to be installed in 5 years plan            | 4883   | Nos.   |
| Total kerosene lamp replaced                             | 19530  | Nos.   |
| Indicative cost of installation                          | 781.21 | Lakh   |
| Kerosene saved                                           | 768    | KL     |
| Savings in terms of Electricity                          | 8      | MU     |
| Cost of kerosene savings                                 | 154    | Lakh   |
| MNRE Subsidy @Rs.81.00 per Wp                            | 293    | Lakh   |
| Payback period                                           | 3.2    | years  |
| Emission reduction in five years                         | 1950   | Tonnes |

#### (v) Using Solar PV for Home Inverters

Coimbatore has been battling with power cuts and load shedding for some time now. The power deficits run up from 2500 MW to 3000MW in the entire State. About 13% in the residential sector use inverters during load shedding. A 15% replacement target in Coimbatore city in 5 years duration yields a reduction in emissions of about 1854 tonnes of  $CO_2$ . The city would have a total installed capacity of PV units of 1526 kWp which will abate carbon emissions, reduce load demand and also generate savings of about INR 80 lakh. The potential of energy savings, green house gas emission reduction and budgetary financial implication is indicated in the table below.

Table 4.39: Target for introducing Solar PV for Home Inverters inCoimbatore City

| Solar PV for Home Inverters                                |        | Unit   |
|------------------------------------------------------------|--------|--------|
| Capacity of solar PV system for Home Inverter              | 250    | Wp     |
| Indicative cost of incorporating Solar PV to Home Inverter | 43750  | INR    |
| Total Residential household                                | 312983 | Nos.   |
| Residential household use Inverter during load shedding    | 13%    |        |
| Target to introduce solar charger for inverter in 5 years  | 15%    |        |
| Number of solar inverter to be installed in 5 years plan   | 6103   | Nos.   |
| Total PV capacity installed                                | 1526   | kWp    |
| Total Energy generated by PV arrays in five years          | 2      | MU     |
| Cost of energy saved                                       | 80     | Lakh   |
| Indicative cost of installation                            | 2670   | Lakh   |
| MNRE subsidy @Rs.57.00 per Wp                              | 870    | Lakh   |
| Payback period                                             | 22     | years  |
| Emission reduction in five years                           | 1854   | Tonnes |

<sup>&</sup>lt;sup>36</sup> Based on ICLEI Survey

<sup>&</sup>lt;sup>37</sup> ICLEI Analysis

#### (vi) Using Solar PV for Generator sets

The replacement if DG sets with SPV units is being encouraged as a means of limiting their use during load shedding periods that the city is oft presented with. Currently, about 6% of the households in the city use DG sets during load shedding. At a replacement target of 10% within 5 years, there occurs an increase in installed capacity of SPV units by 1878 kWp and a substantial saving in diesel consumption in the residential sector of about 1502 KL. The total reduction in emissions that results from this replacement is 3816 tonnes in 5 years.

| Table 4.40: Target for replacement DG/Kerosene Generator set | S |
|--------------------------------------------------------------|---|
| with Solar PV units for Coimbatore City                      |   |

| Calorific Value of Diesel | 11840   | kcal/kg   |
|---------------------------|---------|-----------|
| Density of diesel         | 0.8263  |           |
| Calorific Value of LPG    | 12500   | kcal/kg   |
| 1 kcal=                   | 0.00116 | kWh       |
| Average use of Gen-set    | 200     | days/year |

| Solar PV for replacement of DG/Kerosene Generator sets              |        | Unit   |
|---------------------------------------------------------------------|--------|--------|
| Capacity of solar PV system                                         | 1      | kWp    |
| Indicative cost of incorporating Solar power pack                   | 2.60   | Lakh   |
| Total Residential household                                         | 312983 | Nos.   |
| Total Residential household after being accounted for in apartments | 302183 | Nos.   |
| Residential household use generators during load shedding           | 6%     |        |
| Target to introduce solar power pack in 5 years                     | 10%    |        |
| Number of solar power pack to be installed in 5 years plan          | 1813   | Nos.   |
| Total PV capacity installed                                         | 1813   | kWp    |
| Total Energy generated by PV arrays in five years                   | 2.72   | MU     |
| Typical generator set used                                          | 5-10   | kW     |
| Average fuel consumption per day for 4-6 hours load shedding        | 4      | liters |
| Amount of diesel saved in five years for entire city                | 1450   | KL     |
| Cost of Diesel saved                                                | 580.19 | Lakh   |
| Indicative cost of installation                                     | 4714   | Lakh   |
| MNRE subsidy @Rs.57000.00 per kWp                                   | 1033   | Lakh   |
| Payback period                                                      | 6.34   | Years  |
| Total Emissions reduction in five year for replacement of diesel    | 3684   | Tonnes |

#### (vii) RE systems for residential Apartments/ housing complexes

Coimbatore city has about 3000 apartment building and an average of 30 flats or residences in each building. Solar water heaters and solar PV power plants are considered to be most viable renewable energy devices for the existing and well as new residential complexes.

| Table 4.41: RE system for residential apartments                                |         |        |
|---------------------------------------------------------------------------------|---------|--------|
| Total number of apartment in the city                                           | 3000    |        |
| Total number of apartment in the city                                           | 3000    |        |
| % of residential apartment suitable for installation of RE system <sup>38</sup> | 30%     |        |
| % of residential apartment targeted for RE system integration <sup>39</sup>     | 40%     |        |
| Number of target residential apartment buildings in the city                    | 360     |        |
| Average number of Residence in each building                                    | 30      |        |
| Solar Water Heater System                                                       |         |        |
| Average size of Solar water heaters each building                               | 3000    | LPD    |
| Total capacity of SWH to be installed in 5 years plan                           | 1080000 | LPD    |
| Total collector area in sqm                                                     | 21600   | Sqm    |
| Total energy saved in five years                                                | 12.8    | MU     |
| Indicative cost of installation                                                 | 1530.00 | Lakh   |
| MNRE subsidy @Rs.3300.00 per sqm                                                | 712.80  | Lakh   |
| Beneficiary/ State/ CMC share                                                   | 817.20  | Lakh   |
| Cost of energy savings                                                          | 446.51  | Lakh   |
| Payback period                                                                  | 1.83    | years  |
| Emission reduction in five years                                                | 10800   | Tonnes |
| Solar PV Power Plant for Back-up power                                          |         |        |
| Capacity of solar PV system for single apartment of 20 Residence                | 15      | kWp    |
| Indicative cost of incorporating Solar PV to Home Inverter                      | 35      | Lakh   |
| Total capacity of PV systems for targeted apartments for 5 years                | 5400    | kWp    |
| Total Energy generated by PV arrays in five years                               | 8.10    | MU     |
| Cost of energy saved                                                            | 284     | Lakh   |
| Indicative cost of installation                                                 | 12600   | Lakh   |
| MNRE subsidy @Rs.57 per Wp                                                      | 3078    | Lakh   |
| Beneficiary/ State/ CMC's share                                                 | 9522    | Lakh   |
| Payback period                                                                  | 34      | years  |
| Emission reduction in five years                                                | 6561    | Tonnes |

#### (viii) Summary of RE strategy for Residential Sector

Adoption of above recommended RE strategy in the residential sector will avail the Coimbatore city energy savings of about 91.12 MU and emissions reduction of 62548 tonnes per year. It is highly recommended that the city lays more importance on installation and use of SWH in the city which can be proved to show beneficial in context of energy saved and emissions reduced.

The total investment for these strategies to be applied and implemented is about INR 294 Crore within the 5 year period of which the contribution from MNRE is expected to be around INR 78.8 Crore. Following is a summary of the RE strategy for residential sector in Coimbatore city.

<sup>&</sup>lt;sup>38</sup> Based on ICLEI Survey

<sup>&</sup>lt;sup>39</sup> ICLEI Analysis

Table 4.42: Summary of RE Strategy for Residential sector in Coimbatore City

| <b>RE</b> Strategy for<br>residential sector | Target Capacity | Units | Investment<br>(Lakh) | MNRE subsidy<br>(Lakh) | Beneficiary's<br>contribution<br>(Lakh) | Energy Saved<br>(MU) | Emissions<br>Reductions<br>(Tonnes) |
|----------------------------------------------|-----------------|-------|----------------------|------------------------|-----------------------------------------|----------------------|-------------------------------------|
| Solar water Heaters                          | 27592           | Nos.  | 6648                 | 1755                   | 5893                                    | 41.88                | 33925                               |
| Solar cookers                                | 14084           | Nos.  | 370                  | 111                    | 259                                     | 14.33                | 3440                                |
| Solar Lantern                                | 3662            | Nos.  | 110                  | 30                     | 80                                      | 1.33                 | 335                                 |
| Solar Home System                            | 4883            | Nos.  | 781                  | 293                    | 489                                     | 7.72                 | 1950                                |
| Solar Home inverter                          | 6103            | Nos.  | 2670                 | 870                    | 1800                                    | 2.29                 | 1854                                |
| PV for replacing DG sets                     | 1813            | Nos.  | 4714                 | 1033                   | 3681                                    | 2.72                 | 3684                                |
| SWHS for<br>Residential<br>Apartment         | 1080000         | LPD   | 1530                 | 713                    | 817                                     | 12.76                | 10800                               |
| PV for Residential<br>Apartment              | 5400            | kWp   | 12600                | 3078                   | 9522                                    | 8.10                 | 6561                                |
|                                              |                 |       | 29423                | 7882                   | 21541                                   | 91.12                | 62548                               |

#### 4.4.2 RE Strategy for Commercial and Institutional Sector

The commercial & institutional sector owns substantial part in energy consumption in Coimbatore city. The sector consumes about 24% of total electricity consumed in the city with its 333 educational institutes, 288 health care facilities including clinics, hospitals and medical supply stores, 52 hotels and restaurants and 88 odd restaurants<sup>40</sup>. Different strategies are prepared for different categories of consumers based on type and quantum of energy consumed and availability of resource and space to generate renewable energy in their premises. While preparing the strategy, only techno economically viable and commercially available renewable energy options are considered.

It is estimated that introduction of RE system in commercial and institutional sector in Coimbatore city as described in the table 30 below will save 44.11MU of energy in five years and reduce GHG emission by 37496 Tons per year. Introduction of solar water heater system should be given prime importance in the hospitality, health care sector and educational campus.

#### 4.4.3 RE Strategy for Hospitality Sector

Coimbatore has 52 hotels including twelve 5-star category hotels and twenty seven 3-star category hotels. Major energy requirement such as hot water and electricity during load shedding/ peak load could be partially met by solar energy. Solar thermal system can be used to generate hot water or steam for cooking. Solar PV power plant can be used to reduce or eliminate use of diesel generators which are being used during load shedding hours. Apart from that hotels also generate bio waste which can be used to produce biogas through bio-methanation process. Solar pumps and solar garden lights can be used for sprinkling water and beautification.

<sup>&</sup>lt;sup>40</sup> ICLEI Survey

|                   |      | <i>a</i> . |       | ~ .     | <u> </u>              | <i>a</i> .  |       | -             | <i>a</i> . |
|-------------------|------|------------|-------|---------|-----------------------|-------------|-------|---------------|------------|
| Hotels            | Nos. | Ste        | am    | Solar   | Water                 | Sola        | ır PV | Biogas System |            |
|                   |      | gener      | ating | Heating | Heating System System |             | (CuM) |               |            |
|                   |      | system     | (sam) | (I PD)  |                       |             | Wn)   | (0)           | )          |
|                   |      | system     | (sqm) |         | <b>(D</b> )           | <b>(N</b> ) | •• p) |               |            |
| 5 star hotels     | 12   | 200        | 2400  | 15000   | 180000                | 25          | 300   | 20            | 240        |
| with 100+ rooms   |      |            |       |         |                       |             |       |               |            |
| 3 star hotels     | 12   | 100        | 1200  | 10000   | 120000                | 10          | 120   | 10            | 120        |
| with 100+ rooms   |      |            |       |         |                       |             |       |               |            |
| 3 star hotels $<$ | 15   | 50         | 750   | 5000    | 75000                 | 5           | 75    | 5             | 75         |
| 100 rooms         |      |            |       |         |                       |             |       |               |            |
| Budget hotels     | 13   | 0          | 0     | 3000    | 39000                 | 2           | 26    | 0             | 0          |
| Aggregate         | 52   |            | 4350  |         | 414000                |             | 521   |               | 435        |
| Target in 5 years |      | 50%        | 2175  | 50%     | 207000                | 50%         | 261   | 50%           | 218        |
| Energy Savings    |      |            | 1.41  |         | 3.11                  |             | 0.39  |               | 0.4616     |
| (MU)              |      |            |       |         |                       |             |       |               |            |
| Total Emission    |      |            | 1202  |         | 2639.25               |             | 332   |               | 392.4      |
| reduction         |      |            |       |         |                       |             |       |               |            |
| Investment        |      | 15000      | 326   | 200     | 414                   | 1.75        | 456   | 15000         | 33         |
| (Lakh INR)        |      |            |       |         |                       |             |       |               |            |

| Table 4 | 4.43: | Recommended | Renewable | Energy \$ | Systems | for | Hotels |
|---------|-------|-------------|-----------|-----------|---------|-----|--------|
|---------|-------|-------------|-----------|-----------|---------|-----|--------|

#### 4.4.4 Renewable Energy Systems for Restaurants

Coimbatore has a number of restaurants and eateries. The city has more than 88 restaurants and which are categorized as large, medium and small restaurants. Solar water heaters and solar steam generating systems can be introduced in these restaurants to meet their hot water demand for cooking and utensil cleaning. Since all the restaurants are using DG sets as standby power supply source during load shedding, PV power plant will be an attractive and profitable option for the restaurants. Introduction of RE system in 25% of restaurants in Coimbatore city as described in the table below will save 4.88 MU of energy per year and reduce GHG emission by 3337 Tons per year. Introduction of solar water heater system should be given prime importance followed by biogas system and solar PV system for diesel abatement.

| Restaurants    | Nos. | Steam g | Steam generating Solar Water               |       | Water       | Solar PV |       | Biogas     |      |
|----------------|------|---------|--------------------------------------------|-------|-------------|----------|-------|------------|------|
|                |      | syste   | system for Heating S<br>Cooking (som) (LP) |       | System      | System   | (kWp) | System (Cu |      |
|                |      | COOKII  | ig (sqm)                                   | (Ll   | <b>(U</b> ) |          |       | IV.        | I)   |
| Large          | 5    | 200     | 1000                                       | 15000 | 75000       | 25       | 125   | 50         | 250  |
| restaurants    |      |         |                                            |       |             |          |       |            |      |
| Medium         | 14   | 100     | 1400                                       | 10000 | 140000      | 10       | 140   | 20         | 280  |
| Restaurants    |      |         |                                            |       |             |          |       |            |      |
| Small          | 69   | 50      | 3450                                       | 5000  | 345000      | 5        | 345   | 10         | 690  |
| Restaurants    |      |         |                                            |       |             |          |       |            |      |
| Aggregate      | 88   |         | 5850                                       |       | 560000      |          | 610   |            | 1220 |
| Target in 5    |      | 25%     | 1463                                       | 25%   | 140000      | 25%      | 153   | 25%        | 305  |
| years          |      |         |                                            |       |             |          |       |            |      |
| Energy Savings |      |         | 0.95                                       |       | 2.10        |          | 0.23  |            | 0.65 |
| (MU)           |      |         |                                            |       |             |          |       |            |      |
| Total Emission |      |         | 808                                        |       | 1785        |          | 194   |            | 550  |
| reduction      |      |         |                                            |       |             |          |       |            |      |
| Investment     |      | 15000   | 219                                        | 200   | 280         | 1.75     | 267   | 15000      | 46   |
| (Lakh INR)     |      |         |                                            |       |             |          |       |            |      |

Table 4.44: Recommended Renewable Energy Systems for Restaurants

#### 4.4.5 Renewable Energy Systems for Health care Sector

The Coimbatore city has about 288 health care facilities, which includes 20 urban health posts, 2 maternity homes, 16 corporation dispensaries and 250 private hospitals<sup>41</sup>. Apart from that the city has other health care facilities like dispensaries, dental clinic, microsurgery, day care centre and pathological laboratories. Recommended renewable energy systems have been shown in the table below.

| Type of Health Care<br>establishment | Nos. | Solar V<br>Sys | Vater Heating<br>tem (LPD) | iting<br>) Solar PV System (k |      |  |
|--------------------------------------|------|----------------|----------------------------|-------------------------------|------|--|
|                                      |      | Per unit       | Per unit Recommended       |                               |      |  |
|                                      |      |                | unit                       |                               |      |  |
| Urban Health Posts                   | 20   | 2000           | 40000                      | 2                             | 40   |  |
| Maternity Homes                      | 2    | 10000          | 20000                      | 5                             | 10   |  |
| Corporation Dispensaries             | 16   | 5000           | 80000                      | 10                            | 160  |  |
| Private Hospitals                    | 250  | 10000          | 2500000                    | 10                            | 2500 |  |
| Aggregate                            | 288  |                | 2640000                    |                               | 2710 |  |
| Target in 5 years                    |      | 50%            | 1320000                    | 50%                           | 1355 |  |
| Energy Savings (MU)                  |      |                | 19.80                      |                               | 2.03 |  |
| Total Emission reduction             |      |                | 16830                      |                               | 1728 |  |
| Investment (Lakh INR)                |      | 200            | 2640                       | 1.75                          | 2371 |  |

 Table 4.45: Recommended Renewable Energy Systems for Health Care

 Sector

#### 4.4.6 Renewable Energy Systems for Educational Institutes

Coimbatore is known for its higher educational institutes. Coimbatore city has 60 primary/ nursery schools, 13 intermediate and high schools, 109 secondary schools and 150 colleges for arts, science and engineering education. The government primary schools provide free mid-day meal to its students. Community solar cookers can be used to cook mid-day meal in these schools. The institutes having hostels can use solar water heater to supply hot water to the bathrooms and solar steam cooker for the hostel mess. Suitable renewable energy devices considered for educational institutes are:

- (i) Steam Cooking for hostel mess
- (ii) Solar Water Heating System for hostels
- (iii) Biogas from Kitchen waste of Hostels mess
- (iv) Use of Solar cookers for cooking mid-day meals in primary schools
- (v) Solar PV system

<sup>&</sup>lt;sup>41</sup> ICLEI Survey

| Type of                   | Nos. |                                                                      | RE System Proposed |                                        |                   |                  |                   |                         |                   |  |  |  |  |
|---------------------------|------|----------------------------------------------------------------------|--------------------|----------------------------------------|-------------------|------------------|-------------------|-------------------------|-------------------|--|--|--|--|
| Establishment             |      | Steam<br>generating<br>system for<br>Cooking (sqm<br>collector area) |                    | Solar Water<br>Heating System<br>(LPD) |                   | Sola<br>System   | r PV<br>(kWp)     | Biogas System<br>(Cu M) |                   |  |  |  |  |
|                           |      | Unit<br>Capacity                                                     | Total<br>Capacity  | Unit<br>Capacity                       | Total<br>Capacity | Unit<br>Capacity | Total<br>Capacity | Unit<br>Capacity        | Total<br>Capacity |  |  |  |  |
| Primary School            | 60   | 20                                                                   | 1200               | 0                                      | 0                 | 1                | 60                | 0                       | 0                 |  |  |  |  |
| Middle Schools            | 13   | 0                                                                    | 0                  | 0                                      | 0                 | 2                | 26                | 0                       | 0                 |  |  |  |  |
| Higher<br>Secondary       | 109  | 0                                                                    | 0                  | 0                                      | 0                 | 2                | 218               | 0                       | 0                 |  |  |  |  |
| Special Needs             | 1    | 0                                                                    | 0                  | 5000                                   | 5000              | 2                | 2                 | 0                       | 0                 |  |  |  |  |
| Colleges                  | 150  | 200                                                                  | 30000              | 10000                                  | 1500000           | 10               | 1500              | 20                      | 3000              |  |  |  |  |
| Aggregate                 | 333  |                                                                      | 31200              |                                        | 1505000           |                  | 1806              |                         | 3000              |  |  |  |  |
| Target in 5 years         |      | 25%                                                                  | 7800               | 25%                                    | 376250            | 25%              | 452               | 25%                     | 750               |  |  |  |  |
| Savings (MU)              |      |                                                                      | 5.07               |                                        | 5.64              |                  | 0.68              |                         | 1.59              |  |  |  |  |
| Total Emissions reduction |      |                                                                      | 4310               |                                        | 4797              |                  | 576               |                         | 1353              |  |  |  |  |
| Invest (Lakh<br>INR)      |      | 15000                                                                | 1170               | 200                                    | 753               | 1.75             | 790               | 15000                   | 113               |  |  |  |  |

#### Table 4.46: RE Strategy for Educational sector in Coimbatore City

#### 4.4.7 Summary of RE strategy for Commercial and Institutional Sector

RE strategy for commercial and institutional sector, once implemented fully will save 44.11 MU of energy in five years and reduce GHG of 37496 Tons per year. The primary focus should be given to introduction of solar water heaters for hotels, restaurants, hospitals and other residential institutes, which will save 30.65 MU per year. Solar PV power plant should be introduced for captive diesel abatement in the establishments that are using diesel sets as standby power supply source. The restaurants and hotels that has considerable amount of food and organic waste, should introduce biogas system. Use of solar cooker for preparing mid-day meal in primary schools will be an attractive option to save LPG for cooking and creation of awareness and demonstration about use of renewable energy devices among school children.

| RE Strategy for<br>Commercial and<br>Institutional<br>sector | Units | Target<br>Capacity | Total<br>Investment<br>(Lakh<br>INR) | MNRE<br>subsidy<br>(Lakh<br>INR) | Beneficiary's contribution | Amount<br>of<br>Energy<br>Saved<br>(MU) | Emissions<br>Reductions<br>(Tonnes) |
|--------------------------------------------------------------|-------|--------------------|--------------------------------------|----------------------------------|----------------------------|-----------------------------------------|-------------------------------------|
| Solar Steam<br>Cooker for<br>Cooking in<br>Schools, Hostels, | sqm   | 11438              | 1715.63                              | 617.63                           | 1098.00                    | 7.43                                    | 6319.22                             |
| Hotels,<br>Restaurant                                        |       |                    |                                      |                                  |                            |                                         |                                     |
| Solar Water<br>Heaters for<br>Hotels,<br>Restaurants,        | LPD   | 2043250            | 4086.50                              | 1348.55                          | 2737.96                    | 30.65                                   | 26051.44                            |

Table 4.47: Summary of RE Strategy for Commercial and Institutional Sector

| RE Strategy for<br>Commercial and<br>Institutional<br>sector      | Units | Target<br>Capacity | Total<br>Investment<br>(Lakh<br>INR) | MNRE<br>subsidy<br>(Lakh<br>INR) | Beneficiary's<br>contribution | Amount<br>of<br>Energy<br>Saved<br>(MU) | Emissions<br>Reductions<br>(Tonnes) |
|-------------------------------------------------------------------|-------|--------------------|--------------------------------------|----------------------------------|-------------------------------|-----------------------------------------|-------------------------------------|
| Hospitals                                                         |       |                    |                                      |                                  |                               |                                         |                                     |
| Solar PV Power<br>Plant for Hotels,<br>Restaurants,<br>Hospitals. | kWp   | 2220               | 3884.13                              | 1265.12                          | 2619.01                       | 3.33                                    | 2829.86                             |
| Biogas for Hotels<br>and Restaurants                              | CuM   | 1273               | 190.88                               | 133.61                           | 57.26                         | 2.70                                    | 2295.72                             |
|                                                                   |       |                    | 9877.13                              | 3364.90                          | 6512.23                       | 44.11                                   | 37496.24                            |

#### 4.4.8 RE Strategy for Industrial Sector

Renewable energy devices are suggested for different categories of industrial consumers based upon their type and quantum of energy demand. Low temperature solar thermal application for boiler feed water preheating is a highly feasible and economically beneficial for low heat process industries like diary, textile, food process industries etc. Concentrated Solar Thermal application can be directly used to meet medium temperature process heat for textile, dying and food processing industries.

Solar PV system based uninterrupted power supply system will increase productivity and profitability for small industries. For medium and large industries using diesel generator can use solar PV for reduction of expensive diesel fuel. The industries having large roof can install solar PV power either to meet their own Renewable Purchase Obligation (RPO) or make investment to take benefit under REC mechanism.

| Type of                            | Nos. |                |                   | RE                           | System Prop                   | osed                         |               |                               |            |
|------------------------------------|------|----------------|-------------------|------------------------------|-------------------------------|------------------------------|---------------|-------------------------------|------------|
| Establishment                      |      | Steam g        | enerating<br>stem | Sola<br>Heati                | Solar Water<br>Heating System |                              | ar PV<br>stem | Bio<br>Sys                    | gas<br>tem |
|                                    |      | Average<br>(se | e Capacity<br>qm) | ty Average Capacity<br>(LPD) |                               | Average<br>Capacity<br>(kWp) |               | Average<br>Capacity<br>(Cu M) |            |
|                                    |      | Unit           | Total             | Unit                         | Unit Total                    |                              | Total         | Unit                          | Total      |
| Metal products                     | 3151 | 0              | 0                 | 0                            | 0                             | 10                           | 31510         | 0                             | 0          |
| Textile & textile products         | 1718 | 1000           | 1718000           | 10000                        | 17180000                      | 10                           | 17180         | 0                             | 0          |
| Machinery and<br>Equipments        | 1309 | 0              | 0                 | 0                            | 0                             | 5                            | 6545          | 0                             | 0          |
| Food products and beverages        | 335  | 500            | 167500            | 5000                         | 1675000                       | 5                            | 1675          | 50                            | 1675<br>0  |
| Service Industries                 | 1117 | 0              | 0                 | 0                            | 0                             | 5                            | 5585          | 0                             | 0          |
| Other<br>Manufacturing<br>Industry | 1032 | 0              | 0                 | 0                            | 0                             | 5                            | 5160          | 0                             | 0          |
| Aggregate                          | 8662 |                | 1885500           |                              | 18855000                      |                              | 56910         |                               | 1675<br>0  |
| Target in 5 years                  |      | 10%            | 188550            | 20%                          | 3771000                       | 10%                          | 5691          | 5%                            | 838        |
| Energy Savings<br>(MU)             |      |                | 122.56            |                              | 56.57                         |                              | 8.54          |                               | 1.78       |
| Total Emission reduction           |      |                | 104174            |                              | 48080                         |                              | 7256          |                               | 1511       |
| Investment (Lakh<br>INR)           |      | 15000          | 28283             | 200                          | 7542                          | 1.75                         | 9959          | 1500<br>0                     | 126        |

Table 4.48: Summary of RE Strategy for Industrial Sector

#### 4.4.9 RE Strategy for Government and Municipal Sector

The municipal and government building sector of Coimbatore city consumes about 6% of total electrical energy in the city<sup>42</sup>. The primary consumers in this sector are streetlights, outdoor lights in parks and monuments, markets, office buildings of the Municipal Corporation, water supply, sewerage treatment plant etc. Renewable energy devices are suggested to all categories of consumers depending upon the energy demand. The sector has ample opportunity to save energy through introducing renewable energy and energy conservation measures and could show case these initiatives to encourage people to adopt further.

|                                                        | Potential | Target | Investment<br>(Lakh) | MNRE<br>subsidy<br>(Lakh) | Sate/<br>CMC<br>(Lakh) | Energy<br>Saved<br>(MU<br>per<br>year) | Emissions<br>Reductions<br>per year<br>(Tonnes) |
|--------------------------------------------------------|-----------|--------|----------------------|---------------------------|------------------------|----------------------------------------|-------------------------------------------------|
| Solar Street<br>Lights 1x<br>74Wp                      | 21729     | 10864  | 2173                 | 651                       | 1522                   | 1.21                                   | 977                                             |
| Solar PV<br>Traffic Lights<br>(2x74Wp)                 | 46        | 23     | 11.50                | 5.75                      | 5.75                   | 0.0051                                 | 4.14                                            |
| Solar Blinkers<br>(37Wp)                               | 120       | 60     | 9.00                 | 4.50                      | 4.50                   | 0.0033                                 | 2.70                                            |
| Road Stud @ 1<br>stud in 2m for<br>50% of main<br>road | 25000     | 6250   | 75.00                | 37.50                     | 37.50                  | 0.03                                   | 22.78                                           |
|                                                        |           |        | 2268.37              | 698.96                    | 1569.41                | 1.24                                   | 1006.43                                         |

Table 4.49: RE System for Outdoors lighting (Streets, Traffic, Road safety etc.)

#### Table 4.50: RE Strategy for Municipal and Government Building Sector

| Type of             | Nos. | RE System Proposed                           |       |                               |       |                           |          |                           |       |  |
|---------------------|------|----------------------------------------------|-------|-------------------------------|-------|---------------------------|----------|---------------------------|-------|--|
| Establishment       |      | Steam<br>generating<br>system for<br>Cooking |       | Solar Water<br>Heating System |       | Solar PV                  | 7 System | Biogas System             |       |  |
|                     |      | Average<br>Capacity<br>(sqm)                 |       | Average<br>Capacity (kWp)     |       | Average<br>Capacity (sqm) |          | Average<br>Capacity (kWp) |       |  |
|                     |      | Unit                                         | Total | Unit                          | Total | Unit                      | Total    | Unit                      | Total |  |
| Municipal buildings | 4    | 0                                            | 0     | 0                             | 0     | 10                        | 40       | 0                         | 0     |  |
| CMC Stadiums        | 2    | 0                                            | 0     | 0                             | 0     | 50                        | 100      | 0                         | 0     |  |
| CMC Parks &         | 52   | 0                                            | 0     | 0                             | 0     | 10                        | 520      | 0                         | 0     |  |
| Centres             |      |                                              |       |                               |       |                           |          |                           |       |  |
| CMC Health Care     | 38   | 0                                            | 0     | 2000                          | 76000 | 5                         | 190      | 0                         | 0     |  |
| CMC Schools         | 98   | 0                                            | 0     | 0                             | 0     | 5                         | 490      | 0                         | 0     |  |
| Other buildings     | 174  | 0                                            | 0     | 0                             | 0     | 5                         | 870      | 0                         | 0     |  |
| Bus Stands          | 4    | 0                                            | 0     | 0                             | 0     | 5                         | 20       | 0                         | 0     |  |
| Kaliyanamandapam    | 9    | 0                                            | 0     | 5000                          | 45000 | 5                         | 45       | 20                        | 180   |  |
| Boat House          | 1    | 0                                            | 0     | 0                             | 0     | 2                         | 2        | 0                         | 0     |  |
| Market Complexes    | 17   | 0                                            | 0     | 0                             | 0     | 10                        | 170      | 0                         | 0     |  |

<sup>42</sup> ICLEI Survey

| Type of                  | Nos. |                                              |       |                               | RE Syste | m Propos        | ed               |                           |       |
|--------------------------|------|----------------------------------------------|-------|-------------------------------|----------|-----------------|------------------|---------------------------|-------|
| Establishment            |      | Steam<br>generating<br>system for<br>Cooking |       | Solar Water<br>Heating System |          | Solar PV System |                  | Biogas System             |       |
|                          |      | Average<br>Capacity<br>(sqm)                 |       | Average<br>Capacity (kWp)     |          | Ave<br>Capacit  | rage<br>ty (sqm) | Average<br>Capacity (kWp) |       |
|                          |      | Unit                                         | Total | Unit                          | Total    | Unit            | Total            | Unit                      | Total |
| Daily Market             | 9    | 0                                            | 0     | 0                             | 0        | 5               | 45               | 10                        | 90    |
| Weekly Market            | 1    | 0                                            | 0     | 0                             | 0        | 2               | 2                | 10                        | 10    |
| Pay and use toilets      | 43   | 0                                            | 0     | 0                             | 0        | 2               | 86               | 5                         | 215   |
| Reading Rooms            | 2    | 0                                            | 0     | 0                             | 0        | 1               | 2                | 0                         | 0     |
| Noon Meals Centres       | 88   | 200                                          | 17600 | 2000                          | 176000   | 1               | 17600            | 5                         | 440   |
| Aggregate                | 452  |                                              | 17600 |                               | 297000   |                 | 20182            |                           | 935   |
| Target in 5 years        |      | 10%                                          | 1760  | 20%                           | 59400    | 20%             | 4036             | 10%                       | 94    |
| Energy Savings<br>(MU)   |      |                                              | 1.14  |                               | 0.89     |                 | 6.05             |                           | 0.20  |
| Emission reduction       |      |                                              | 972   |                               | 757      |                 | 5146             |                           | 169   |
| Investment (Lakh<br>INR) |      | 1500<br>0                                    | 264   | 200                           | 119      | 1.75            | 7064             | 15000                     | 14    |

The Municipal sector can contribute 9.53 MU energy savings in five years through introducing RE devices in the different municipal utilities and services reducing GHG emission by 8051 tonnes in five years.

## Table 4.51: Summary of RE Strategy for Municipal andGovernment Building Sector

| RE Strategy for<br>Municipal and<br>Government sector | Units         | Target<br>Capacity | Total<br>Investment<br>(Lakh INR) | MNRE<br>subsidy<br>(Lakh INR) | Sate/ CMC/<br>contribution<br>(Lakh INR) | Amount of<br>Energy<br>Saved (MU) | Emissions<br>Reductions<br>(Tonnes) |
|-------------------------------------------------------|---------------|--------------------|-----------------------------------|-------------------------------|------------------------------------------|-----------------------------------|-------------------------------------|
| Solar Steam                                           | sqm collector | 1760               | 264.00                            | 95.04                         | 168.96                                   | 1.14                              | 972.40                              |
| generating system                                     | area          |                    |                                   |                               |                                          |                                   |                                     |
| Solar Water Heaters                                   | LPD           | 59400              | 118.80                            | 39.20                         | 79.60                                    | 0.89                              | 757.35                              |
| Solar PV Power Plant                                  | kWp           | 4036               | 7063.70                           | 2300.75                       | 4762.95                                  | 6.05                              | 5146.41                             |
| Biogas                                                | Cu M          | 94                 | 14.03                             | 9.82                          | 4.21                                     | 0.20                              | 168.68                              |
| Solar Street lights<br>1x74Wp                         | Nos.          | 10864              | 2173                              | 651                           | 1522                                     | 1.21                              | 977                                 |
| Solar PV Traffic<br>Lights (2x74Wp)                   | 46            | 23                 | 11.50                             | 5.75                          | 5.75                                     | 0.0051                            | 4.14                                |
| Solar Blinkers<br>(37Wp)                              | 120           | 60                 | 9.00                              | 4.50                          | 4.50                                     | 0.0033                            | 2.70                                |
| Road Stud @ 1 stud<br>in 2m for 50% of<br>main road   | 25000         | 6250               | 75.00                             | 37.50                         | 37.50                                    | 0.03                              | 22.78                               |

#### 4.4.10 Energy Efficiency Strategies

While renewable energy technologies would provide clean energy, EE and DSM measures would help in reducing the energy demand. Energy Efficiency (EE) initiatives are the most financially feasible energy saving options in India today. In this report the EE measures have been thoroughly analyzed for all the four sectors, i.e. residential, commercial, industrial as well as municipal. The financial and technical analysis is provided for each strategy suggested in all the sectors. The list of EE and DSM measures suggested for different sectors is given below:

#### **Residential Sector**

- Replace Incandescent Lamps with Fluorescent
- T5 tube light + Electronic Ballast to replace T12/T8 tube light+ Magnetic Ballast
- Efficient ceiling fans to replace conventional ceiling fans
- Replacement of conventional air-conditioners with EE star rated ACs
- Replacement of conventional refrigerators with EE star rated refrigerators
- Replacement of conventional water pumps with EE water pumps
- Reduce energy consumption in existing private buildings
- Reduce energy consumption in all new construction

#### Commercial and institutional building Sector

- Replace Incandescent Lamps with Fluorescent
- T5 tube light + Electronic Ballast to replace T12/T8 tube light+ Magnetic Ballast
- Efficient ceiling fans to replace conventional ceiling fans
- Replacement of conventional air-conditioners with EE star rated ACs
- Replacement of conventional refrigerators with EE star rated refrigerators
- Replacement of conventional water pumps with EE water pumps

#### **Industrial Sector**

- Replace Incandescent Lamps with Fluorescent
- T5 tube light + Electronic Ballast to replace T12/T8 tube light+ Magnetic Ballast
- Efficient ceiling fans to replace conventional ceiling fans
- Replacement of conventional air-conditioners with EE star rated ACs
- Energy efficiency in motors, furnaces, boilers, etc.

#### **Municipal Sector**

- Replacement of 150 watt HPSV with LEDs
- Replacement of 40 watt T8/T12 tube lights with T5 tube lights
- Sensors for automatic on/off of street lights
- Proper pump-system design (efficient Pump, pumps heads with system heads
- Installation of variable speed drivers
- Power saver installation in pump house
- Plugging of leakages in the water supply system and use of efficient pumps and motors
- Energy Efficiency Measures in WTP

A sector-wise techno-economic analysis of potential energy efficiency and DSM measures has been carried out.

#### 4.4.11 EE Strategy for Residential sector

Residential sector consumes largest amount of energy. Important proven and cost effective measures for the sector are described in this section. Based on the survey, it was found that incandescent lights are still used a lot in the residential sector. Utilizing the survey data the savings due to replacement of incandescent lamps with CFL are calculated and are presented in the table below.

#### (i) Replace Incandescent Lamps with Fluorescent

Incandescent bulbs are the major and the most common source of high-energy consumption in the residential area. Replacement of incandescent lamps has acquired a substantial precedence in all the energy efficiency strategies as the most feasible option. The techno-commercial details for replacement of incandescent bulbs with CFL are given below. 100% households using incandescent bulbs have been considered as target group for replacements.

| Particulars                                              |          | Unit   |
|----------------------------------------------------------|----------|--------|
| Total Residential household                              | 312983   | Nos.   |
| Household using incandescent bulb                        | 42%      |        |
| Target to replace incandescent bulb with CFL             | 100%     |        |
| Number of incandescent bulb to be replaced per household | 4        | Nos.   |
| Total number of incandescent bulb to be replaced         | 521355   | Nos.   |
| Indicative cost of installation                          | 782      | Lakh   |
| Energy saved by replacing 60W bulb with 15W CFL          | 51379492 | kWh    |
| Cost of electricity savings                              | 1798     | Lakh   |
| Payback period                                           | 0.43     | Years  |
| Emission reduction per year                              | 41617    | Tonnes |

Table 4.52: Replacement of incandescent lamps with fluorescent

# (ii) T5 tube light + Electronic Ballast to replace T12/T8 tube light+ Magnetic Ballast

A conventional tube light (with magnetic ballast consuming 15W) consumes around 55 watts. It can be replaced with T5 tube (28W) with electronic ballast (4W) which will require around 32W. The calculations have been done for a period of 5 years assuming replacement of T 12 /T8 tube lights in 80% households using T12/T8 tube lights.

Table 4.53: T5 tube light + Electronic Ballast to replace T12/T8 tube light+ Magnetic Ballast

| Particulars                                             |          | Unit   |
|---------------------------------------------------------|----------|--------|
| Total Residential household                             | 312983   | Nos.   |
| Household using T8/T12 tube lights                      | 94%      |        |
| Target to replace T8/T12 by T5 tube lights              | 80%      |        |
| Number of T8/T12 to be replaced per household           | 2        | Nos.   |
| Total number of T8/T12 tube lights to be replaced       | 470311   | Nos.   |
| Indicative cost of installation                         | 2352     | Lakh   |
| Energy saved by replacing T8/T12(with magnetic ballast) | 15793036 | kWh    |
| with T5 (with electronic ballast)                       |          |        |
| Cost of electricity savings                             | 553      | Lakh   |
| Payback period                                          | 4.25     | Years  |
| Emission reduction per year                             | 12792    | Tonnes |

#### (iii) Efficient ceiling fans to replace conventional ceiling fans

Replacing conventional fans with star rated fans can save substantial amount of electrical energy and money. The financial and technical analysis for replacement of conventional ceiling fans in residential sector of Coimbatore city assuming replacement of old ceiling fans with star rated ones for 50% households.

| Tuble 1.0 1. Different Coming I and to Replace Co       | able ne n'Emelent coming i and to neplace conventional coming i and |        |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------|--------|--|--|--|--|
| Particulars                                             |                                                                     | Unit   |  |  |  |  |
| Total Residential household                             | 312983                                                              | Nos.   |  |  |  |  |
| Household using Conventional Fans                       | 91.44%                                                              |        |  |  |  |  |
| Target to replace CF by EE Fans                         | 50%                                                                 |        |  |  |  |  |
| Number of Conventional fan to be replaced per household | 300                                                                 | Nos.   |  |  |  |  |
| Total number of Conventional Fans to be replaced        | 429306.26                                                           | Nos.   |  |  |  |  |
| Indicative cost of installation                         | 6440                                                                | Lakh   |  |  |  |  |
| Energy saved by replacing Conventional Fans by EE Fans  | 23182538                                                            | kWh    |  |  |  |  |
| Cost of electricity savings                             | 811                                                                 | Lakh   |  |  |  |  |
| Payback period                                          | 8                                                                   | Years  |  |  |  |  |
| Emission reduction per year                             | 18778                                                               | Tonnes |  |  |  |  |

Table 4.54: Efficient Ceiling Fans to Replace Conventional Ceiling Fans

#### (iv) Replacement of conventional air-conditioners with EE star rated ACs

Due to moderate to cold weather, use of air conditioner is not common in Coimbatore. Survey results show that 14% of residential households use air conditioners. These air conditioners can be replaced by start rated energy efficient air conditioners. The replacement target is 50% households using air conditioners.

Table 4.55: Replacement of conventional air-conditioners with EE starrated ACs

| Particulars                                            |         | Unit   |
|--------------------------------------------------------|---------|--------|
| Total Residential household                            | 312983  | Nos.   |
| Household using Conventional AC                        | 14%     |        |
| Target to replace Conventional ACs by EE star rated AC | 50%     |        |
| Number of Conventional ACs to be replaced per          | 1       | Nos.   |
| household                                              |         |        |
| Total number of Conventional ACs to be replaced        | 21236   | Nos.   |
| Indicative cost of installation                        | 5838    | Lakh   |
| Energy saved by replacing Conventional ACs by EE Star  | 8600538 | kWh    |
| Rated ACs                                              |         |        |
| Cost of electricity savings                            | 301     | Lakh   |
| Payback period                                         | 19      | Years  |
| Emission reduction per year                            | 6966    | Tonnes |

#### (v) Replacement of conventional refrigerators with EE star rated refrigerators

One of the most common appliance used in homes are the refrigerators. With increasing affordability refrigerators have become an indispensable item in most Indian households. They come in the capacity range of 200-400 liters. These days many BEE star rated energy efficient refrigerators are available in the Indian market. About 59% households use refrigerator and replacement of 50 % of those refrigerator with star rated ones will save on average 44MU electricity every year.

| Table 4.56: Replacement of Conventional | Refrigerators | with EE | Star | Rated |
|-----------------------------------------|---------------|---------|------|-------|
| Refrigerators                           | _             |         |      |       |

| Particulars                                               |          | Unit   |
|-----------------------------------------------------------|----------|--------|
| Total Residential household                               | 312983   | Nos.   |
| Household using Conventional Refrigerators                | 58.96%   |        |
| Target to replace Conventional Refrigerators by EE Star   | 50%      |        |
| Rated Refrigerators                                       |          |        |
| Number of Conventional Refrigerators to be replaced per   | 1        | Nos.   |
| household                                                 |          |        |
| Total number of Conventional Refrigerators to be replaced | 92263    | Nos.   |
| Indicative cost of installation                           | 10380    | Lakh   |
| Energy saved by replacing Conventional Refrigerators by   | 43732517 | kWh    |
| EE Star Rated Refrigerators                               |          |        |
| Cost of electricity savings                               | 1531     | Lakh   |
| Payback period                                            | 7        | Years  |
| Emission reduction per year                               | 35423.3  | Tonnes |

#### (vi) Replacement of conventional water pumps with EE star rated water pumps

Survey in Coimbatore has shown that residential households use water pumps of 1.5 HP capacities which have an approximate electrical consumption of 2.2 kWh. Assuming 45% households in Coimbatore use water pumps, 50% replacement of conventional pumps by energy efficient pumps have been targeted for energy savings that have been estimated to be 10.7MU in one year.

Table 4.57: Replacement of conventional water pumps with EE star rated water pumps

|                                                       |          | Unit   |
|-------------------------------------------------------|----------|--------|
| Total Residential household                           | 312983   | Nos.   |
| Household using Water Pumps                           | 45%      |        |
| Target to replace Conventional Water Pump by EE Pump  | 50%      |        |
| Number of Conventional Pumps to be replaced per       | 1        | Nos.   |
| household                                             |          |        |
| Total number of Conventional Pumps to be replaced     | 98121    | Nos.   |
| Indicative cost of installation                       | 1962.42  | Lakh   |
| Energy saved by replacing Conventional Water Pumps by | 10744227 | kWh    |
| EE Water Pumps                                        |          |        |
| Cost of electricity savings                           | 376.05   | Lakh   |
| Payback period                                        | 5.22     | Years  |
| Emission reduction per year                           | 8703     | Tonnes |

#### (vii) Summary of EE Strategy in Residential Sector

The estimated potential of energy savings in the residential sector through energy efficiency measures is 153MU per year which is alone can meet 31.81% of the target of 482.35MU energy savings in five years in Coimbatore City. The reduction of emission through EE measures in residential sector is 124280 tonnes per year. Replacement of incandescent bulbs with CFL, conventional fans, refrigerators and air conditioners with star rated one is the most potential scope for energy savings.

| EE Measures in residential sector                                              | Unit | Target<br>Capacity | Investment<br>(Lacs INR) | Amount<br>of<br>Energy<br>Saved<br>(MU) | Emissions<br>Reduction<br>(Tonnes) |
|--------------------------------------------------------------------------------|------|--------------------|--------------------------|-----------------------------------------|------------------------------------|
| Replacement of 60 watt incandescent with 15 watt CFL                           | Nos. | 521355             | 782                      | 51                                      | 41617                              |
| Replacement of T12/T8 with T5 FTL                                              | Nos. | 470311             | 2352                     | 16                                      | 12792                              |
| Replacement of conventional Fans<br>with EE star rated fans                    | Nos. | 429306             | 6440                     | 23                                      | 18778                              |
| Replacement of conventional AC with EE star rated AC                           | Nos. | 21236              | 5838                     | 9                                       | 6966                               |
| Replacement of conventional<br>refrigerator with EE star rated<br>refrigerator | Nos. | 92263              | 10380                    | 44                                      | 35423                              |
| Installation of EE water pump                                                  | Nos. | 98121              | 1962                     | 11                                      | 8703                               |
|                                                                                |      |                    | 27753                    | 153                                     | 124280                             |

Table 4.58: Summary of EE Strategy in Residential Sector

#### 4.4.12 EE Strategy for Government and Municipal Sector

Government establishments and Municipal services annually incur huge expenditures on electricity consumption. Hence energy efficiency has become the call of the day for municipal organizations in India, owing to growing city needs. The Bureau of Energy Efficiency in India has already come out with the Manual for development of Municipal Energy Efficiency Projects. Energy conservation drives in government buildings and municipal utilities will become an exemplary initiative for similar activities in the city. As a high visibility and administration center Municipal bodies across India should go ahead in implementing the strategies and replicating the success stories. Tamil Nadu government has already taken few initiatives to save energy in government buildings. It is now mandatory that all government establishment to have CFLs in place of incandescent bulbs. The following efficiency measures are suggested in government and municipal sector.

#### **EE** measures in Street Lighting

## (i) Replacement of 250 W HPSV with 200 W Induction lamps

Replacement of about 15000 250W HPSV lamps with 200W Induction lamps to be used in Street lights can save 3.3MU of electricity per year reducing 2660 tonnes of GHG per year.

|                                                       |         | Unit   |
|-------------------------------------------------------|---------|--------|
| Total number of 250 watt HPSV                         | 14998   | Nos.   |
| Target to replace HPSV lamp with Induction Lamp       | 100%    |        |
| Total number of 200 watt Induction Lamp needed        | 14998   | Nos.   |
| Indicative cost of installation                       | 3802    | Lakh   |
| Energy saved by replacing 250 watt HPSV with 200 watt | 3284562 | kWh    |
| Induction Lamp                                        |         |        |
| Cost of electricity savings                           | 164     | Lakh   |
| Payback period                                        | 23.15   | Years  |
| Emission reduction per year                           | 2660    | Tonnes |

Table 4.59: Replacing 250 W HPSV with 200W Induction lamps

#### (ii) Replacement of 150 W and 125 W HSPV with 100 W Induction lamps

Replacement of about 300 150 W and 125 W HPSV lamps with 100W Induction lamps to be used in Street lights can save 0.06MU of electricity per year reducing 46 tonnes of GHG per year.

|                                                     |       | Unit   |
|-----------------------------------------------------|-------|--------|
| Total number of 150 & 125 watt HPSV                 | 259   | Nos.   |
| Target to replace 150 & 125 watt HPSV with 100 watt | 100%  |        |
| Induction lamp                                      |       |        |
| Total number of 100 watt induction lamp needed      | 259   | Nos.   |
| Indicative cost of installation                     | 54    | Lakh   |
| Energy saved by replacing 150 & 125 HPSV with 100   | 56721 | kWh    |
| watt induction lamp                                 |       |        |
| Cost of electricity savings                         | 3     | Lakh   |
| Payback period                                      | 19.18 | Years  |
| Emission reduction per year                         | 46    | Tonnes |

#### Table 4.60: Replacing 150 & 125 W HPSV with 100 W Induction lamps

Street lighting is one of the major sources of energy consumption in municipal area. HPSV lamps of 400W, 250W, 150W, 70W and 40W fluorescent tubes are mostly used as streetlights to lighten the city area. Different energy conservation measures could be taken up for electricity savings in street lighting systems. Commonly practiced energy conservation measures are discussed below.

#### (iii) Replacement of 40 W tube lights with 25 W LED lamps

The extended jurisdictional area under the CMC limits will be implemented with energy conservancy measures through replacements of 40W tube light with 25 W LED street lights. The area currently has 22925 numbers of street lights and a target of 100% replacement is proposed with an investment of INR 4956 Lakh. The payback period for such an investment considering the savings in cost of energy, reduction in O&M cost of LED etc is evaluated at 14.7 years. A summary of potential savings, investment, payback and potential reduction of GHG from power savers are given in the table below

| Particulars                                    |         | Unit   |
|------------------------------------------------|---------|--------|
| Total number of 40 W tube lights               | 22925   | Nos.   |
| Target to replace 40 W tube lights by 25 W LED | 100%    |        |
| lamps                                          |         |        |
| Total number of 25 watt LED lamp needed        | 22925   | Nos.   |
| Indicative cost of installation                | 4856    | Lakh   |
| Savings in lower replacement costs in 25 W LED | 282     | Lakh   |
| Energy saved                                   | 1380658 | kWh    |
| Cost of electricity savings                    | 48      | Lakh   |
| Total cost savings                             | 330     | Lakh   |
| Payback period                                 | 14.70   | Years  |
| Emission reduction per year                    | 45.94   | Tonnes |

#### (iv) Use of Power savers for HPSV Street Lights

Using power savers can save about 30% electricity in the HPSV street lighting systems. There are 21603 numbers of HPSV street lights in Coimbatore excluding those under proposal for being replaced as detailed above. A summary of potential savings, investment, payback and potential reduction of GHG from power savers are given in the table below.

| Wattage                     | Unit     | 400 W              | 400W    | 70 W       | Total     |
|-----------------------------|----------|--------------------|---------|------------|-----------|
|                             |          | (High<br>mast SVL) |         |            |           |
| Total no of street lights   | No.s     | 16                 | 113     | 21474      | 21603     |
| Load                        | KW       | 6                  | 45      | 1503       | 1555      |
| Electricity Consumption     | kWh      | 25696              | 181478  | 6035268    | 6242442   |
| No of 25 KVA Power Saver    | No.s     | 0.32               | 2.26    | 75.16      | 78        |
| Required                    |          |                    |         |            |           |
| Cost of each 20 KVA Power   | INR Lakh | 0.3                | 1.9     | 63.9       | 66        |
| Saver is INR 0.85 Lakh each |          |                    |         |            |           |
| Energy Saved                | kWh      | 7708.8             | 54443.4 | 1810580.31 | 1872732.5 |
| Cost of Energy Saved        | INR Lakh | 0.3                | 1.9     | 63.4       | 66        |
| Payback Period              | years    | 1.01               | 1.01    | 1.01       |           |
| Emissions Saved             | Tonnes   | 6.24               | 44.10   | 1466.57    | 1517      |

Table 4.61: Power saver for HPSV streetlights

#### (v) Use of Power savers for MHL fittings

Metal Halide Lamp fittings are generally used at traffic junctions where they're mounted in a tall pole for illumination. These are compact and can be subjected to efficient use when used with a power saver pack. A summary of potential savings, investment, payback and potential reduction of GHG from power savers are given in the table below

| Wattage                                | Unit     | <b>400 W</b> | 250 W    | Total     |
|----------------------------------------|----------|--------------|----------|-----------|
| Total no of street lights              | No.s     | 534          | 307      | 841       |
| Load                                   | KW       | 214          | 77       | 291       |
| Electricity Consumption                | kWh      | 857604       | 308151   | 1165755   |
| No of 25 KVA power Saver Required      | No.s     | 10.68        | 3.84     | 15        |
| Cost of each 20 KVA power saver is INR | INR Lakh | 907800       | 326187.5 | 1233987.5 |
| 0.85 Lakh each                         |          |              |          |           |
| Energy Saved                           | kWh      | 257281.2     | 92445.38 | 349727    |
| Cost of Energy Saved                   | INR Lakh | 900484.2     | 323558.8 | 1224043   |
| Payback Period                         | years    | 1.01         | 1.01     |           |
| Emissions Saved                        | Tonnes   | 208.40       | 74.88    | 283.3     |

Table 4.62: Power saver for MHL fittings

#### (vi) Use of Power savers for CFLs

Under the energy conservation measures of the Corporation of Coimbatore, CFLs were extensive replacements for street lights in the recent past. Use of power saver packs on these equipments renders them more efficient and increases their life. A summary of potential savings, investment, payback and potential reduction of GHG from power savers are given in the table below.

| Wattage                   | Unit   | 250 W     | 4*24 W   | 72 W     | 36 W     | Total    |
|---------------------------|--------|-----------|----------|----------|----------|----------|
| Total no of street lights | No.s   | 3358      | 41       | 75       | 358      | 3832     |
| Load                      | KW     | 840       | 4        | 5        | 13       | 862      |
| Electricity Consumption   | kWh    | 3370593   | 15803.0  | 21681    | 51745    | 3459822  |
| No of 25 KVA power        | No.s   | 41.975    | 0.1968   | 0.27     | 0.6444   | 43.0862  |
| Saver Required            |        |           |          |          |          |          |
| Cost of each 20 KVA       | INR    | 3567875   | 16728    | 22950    | 54774    | 3662327  |
| power saver is INR 0.85   | Lakh   |           |          |          |          |          |
| Lakh each                 |        |           |          |          |          |          |
| Energy Saved              | kWh    | 1011177.8 | 4740.912 | 6504.3   | 15523.6  | 1037946. |
|                           |        |           |          |          |          | 6        |
| Cost of Energy Saved      | INR    | 3539122   | 16593.19 | 22765.05 | 54332.59 | 3632813  |
|                           | Lakh   |           |          |          |          |          |
| Payback Period            | years  | 1.01      | 1.01     | 1.01     | 1.01     |          |
| <b>Emissions Saved</b>    | Tonnes | 819.05    | 3.84     | 5.27     | 12.57    | 840.74   |

#### Table 4.63: Power saver for CFLs

#### (vii) Use of Power savers for T5 Tube Lights and Other tubes

A summary of potential savings, investment, payback and potential reduction of GHG from power savers are given in the table below.

| Wattage                                     | Unit     | T 5 Tube Lights |       | Total  |
|---------------------------------------------|----------|-----------------|-------|--------|
| Total no of street lights                   | No.s     | 534             | 194   | 728    |
| Load                                        | KW       | 51              | 23    | 74     |
| Electricity Consumption                     | kWh      | 205825          | 93469 | 299294 |
| No of 25 KVA power Saver Required           | No.s     | 2.5632          | 1.164 | 3.73   |
| Cost of each 20 KVA power saver is INR 0.85 | INR Lakh | 217872          | 98940 | 316812 |
| Lakh each                                   |          |                 |       |        |
| Energy Saved                                | kWh      | 61747           | 28041 | 89788  |
| Cost of Energy Saved                        | INR Lakh | 216116          | 98143 | 314259 |
| Payback Period                              | years    | 1               | 1     | -      |
| Emissions Saved                             | Tonnes   | 50              | 23    | 73     |

#### (viii) Sensors for automatic on/off of street lights

Automatic streetlights ensure that lights turned on during daytime do not waste energy. Many streetlights in India face this predicament due to faulty manually controlled streetlights. Manual control involves labor costs, energy wastes and poor efficiency; hence Municipal street lights should hasten the process of installing automatic sensors. Solar sensors are the new and upcoming products in the market today and should be applied by municipalities for higher efficiency in the operation and maintenance of municipal streetlights. Coimbatore city showed predominantly manual control of municipal streetlights and hence it is highly recommended for switch over to automatic sensors preferably solar automatic sensors.

## (ix) Energy Efficiency Measures in Water Pumping

Water pumping is one of the major utility practices which consume high energy. The energy efficiency initiatives for water pumping in India have been going on for quite some time. BEE state in its Manual for Development of Municipal Energy Efficiency Projects states that 25% energy savings can be obtained from initiatives in water systems alone. In Karnataka Municipal energy efficiency Improvement initiatives, water pumping has been

addressed. This has been further taken up as a Municipal Energy efficiency CDM project. The effort can be replicated throughput other municipalities sin India. This would bring about a lot of energy savings in water pumping utilities.

## (x) Proper pump-system design (efficient Pump, pumps heads with system heads)

Proper water pumping design can bring about lots of energy savings in the running and maintenance cost of water pump systems. Careful designing is required to assess the volume of water to be pumped and the height it needs to be raised to. Fluid piping soft wares can be utilized for designing water pumps in Municipal bodies. A 20% saving is assumed for design based energy efficiency of water pumping systems. The techno-economics given below for this initiative is based on this assumption.

Table 4.64: Proper pump-system design (efficient Pump, pumps heads with system heads)

| Standard/Recommended Condition   | Value  |
|----------------------------------|--------|
| Annual Energy Consumption in MU  | 16.95  |
| Annual Energy Cost in Rs. (lacs) | 593.25 |
| Saving %                         | 20%    |
| Total Annual Saving in MU        | 3.39   |
| Annual Saving in Rs. (lacs)      | 118.65 |
| Emission Reduction               | 2745.9 |

#### (xi) Installation of variable speed drivers

Dimension and adjustment losses are two of the major energy loss sources in pumping processes. Adjusting pump speed or using Variable Speed Driver to adjust speed is one way to decreasing both the aforementioned losses in pumping processes. An assumption of 5% savings is taken to provide the financial and technical details of installing variable speed drivers in municipal water pumping systems in Coimbatore City.

#### **Table 4.65: Variable Speed Drivers**

| Standard/Recommended Condition   | Value   |
|----------------------------------|---------|
| Annual Energy Consumption in MU  | 16.95   |
| Annual Energy Cost in Rs. (lacs) | 593.25  |
| Saving %                         | 5%      |
| Total Annual Saving in MU        | 0.8475  |
| Annual Saving in Rs. (lacs)      | 29.6625 |
| Emission Reduction               | 686.475 |

#### (xii) Power saver installation in pump house

An assumption of 15% savings is taken as the energy saving potential for installing power saver in municipal pump houses. The following techno-economics is based on this assumption.

| Table 4.66: Power saver installation in | pump house |
|-----------------------------------------|------------|
|-----------------------------------------|------------|

| Standard/Recommended Condition   | Value  |
|----------------------------------|--------|
| Annual Energy Consumption in MU  | 16.95  |
| Annual Energy Cost in Rs. (lacs) | 593.25 |
| Saving %                         | 15%    |

| Standard/Recommended Condition | Value   |
|--------------------------------|---------|
| Total Annual Saving in MU      | 2.5425  |
| Annual Saving in Rs. (lacs)    | 88.9875 |
| Emission Reduction             | 2059.43 |

#### **Energy Efficiency measures in Sewerage plants**

#### (i) **Installation of variable speed drives**

Assuming savings of about 5% the financial and technical details of installing variable speed drivers in municipal sewer pumping systems in Coimbatore City is calculated below

#### **Standard/Recommended Condition** Value Annual Energy Consumption in MU 2.14 Annual Energy Cost in Rs. (lacs) 74.9 Saving % 5% Total Annual Saving in MU 0.11 Annual Saving in Rs. (lacs) 3.75 **Emission Reduction** 87

#### Table 4.67: Variable speed drives

#### (ii) Power saver installation in pump house

It is assumed that 15% of saving is obtained when power savers are installed in the sewerage pumping systems. The following techno-economics is based on this assumption.

#### **Standard/Recommended Condition** Value Annual Energy Consumption in MU 2.14 Annual Energy Cost in Rs. (lacs) 74.9 Saving % 15% Total Annual Saving in MU 0.321 Annual Saving in Rs. (lacs) 11.24 **Emission Reduction** 260

#### Table 4.68: Power saver installation in pump house

#### 4.4.13 Summary of EE Strategy for Government and Municipal Sector

The energy savings potential through energy efficiency measures in municipal sector is 15.71MU in five years through reduction of 11651.2 tonnes of GHG emissions per year.

#### Table 4.69: Summary of EE Strategy for Government and municipal sector

| EE Measures                            | No. of<br>replacements | Investment<br>(Lakh) | Electricity<br>Saved (MU) | Emissions<br>Saved<br>(Tonnes) |
|----------------------------------------|------------------------|----------------------|---------------------------|--------------------------------|
| Indicative cost of replacing           | 14998                  | 3802                 | 3.28                      | 2660                           |
| watt induction lamps                   |                        |                      |                           |                                |
| Indicative cost of replacing           | 259                    | 54                   | 0.06                      | 46                             |
| 100 watt induction lamps               |                        |                      |                           |                                |
| Indicative cost of replacing           | 22925                  | 4856                 | 1.38                      | 46                             |
| 40W tube lights with 25 W<br>LED lamps |                        |                      |                           |                                |

| EE Measures                                                         | No. of<br>replacements | Investment<br>(Lakh) | Electricity<br>Saved (MU) | Emissions<br>Saved<br>(Tonnes) |
|---------------------------------------------------------------------|------------------------|----------------------|---------------------------|--------------------------------|
| Pumping system<br>improvement in existing<br>water supply facility  | -                      | -                    | 6.78                      | 5491.8                         |
| Pumping system<br>improvement in existing<br>sewage system facility | -                      | -                    | 0.86                      | 693                            |
| Use of power saver in street lighting                               | 139                    | 118.21               | 3.35                      | 2714                           |
|                                                                     |                        |                      | 15.71                     | 11651.20                       |

#### 4.4.14 EE Strategy for Commercial and Institutional Sector

The commercial and institutional sector comprises primarily of institutes, shops, markets, hotels and restaurants. Thus efficiency and conservation have to be addressed in existing and new buildings to affect overall demand and consumption reduction. Energy efficiency in the commercial sector is also hugely dependent on replacement of conventional equipment with more energy efficient appliances. All kinds of building sectors are available in Coimbatore ranging from hotels, hospitals, shops, malls, hostels, educational institutes and restaurants. The strategies here target all these building types in Coimbatore.

#### (i) Replace Incandescent Lamps with Fluorescent

CFL usage has been widespread in the last few years and it is high time that all commercial establishments should voluntarily replace the high energy consuming incandescent lamps with CFLs. From survey results we have assumed that 16% of the commercial sector establishments use incandescent bulbs and 100% of establishment use T8/T12 tube lights. A target to replace 80% of the incandescent bulbs and 80% of T8/T12 tubes in these households with CFLs is assumed to give the calculations below.

| <u></u>                                                 |          |        |
|---------------------------------------------------------|----------|--------|
| Particulars                                             |          | Unit   |
| Total Commercial Consumers                              | 98056    | Nos.   |
| Consumers using incandescent bulb                       | 16%      |        |
| Target to replace incandescent bulb with CFL            | 80%      |        |
| Number of incandescent bulb to be replaced per consumer | 10       | Nos.   |
| Total number of incandescent bulb to be replaced        | 125512   | Nos.   |
| Indicative cost of installation                         | 188      | Lakh   |
| Energy saved by replacing 60W bulb with 15W CFL         | 10166446 | kWh    |
| Cost of electricity savings                             | 508      | Lakh   |
| Payback period                                          | 0.37     | years  |
| Emission reduction                                      | 8235     | Tonnes |

Table 4.70: Replacement of incandescent lamps with fluorescent

#### Table 4.71: Replace T12/T8 tube light by T5 tube light

| Particulars                                       |        | Unit |
|---------------------------------------------------|--------|------|
| Total Commercial Consumers                        | 98056  | Nos. |
| Consumers using T8/T12 tube lights                | 100%   |      |
| Target to replace T8/T12 by T5 tube lights        | 80%    |      |
| Number of T8/T12 to be replaced per consumer      | 2      | Nos. |
| Total number of T8/T12 tube lights to be replaced | 156890 | Nos. |
| Indicative cost of installation                   | 784    | Lakh |
| Particulars                                             |         | Unit   |
|---------------------------------------------------------|---------|--------|
| Energy saved by replacing T8/T12(with magnetic ballast) | 4330153 | kWh    |
| with T5 (with electronic ballast)                       |         |        |
| Cost of electricity savings                             | 217     | Lakh   |
| Payback period                                          | 3.62    | years  |
| Emission reduction                                      | 3507    | Tonnes |

#### (ii) Replacement of inefficient fans

Analysis of the sample survey of Coimbatore city reveals 99% consumers use fans during summer. Assuming 15% of the conventional fans in the commercial sector of Coimbatore can be replaced with more energy efficient fans the following techno-commercials have been calculated.

#### Table 4.72: Replacement of Conventional Fans

| Particulars                                            |         | Unit   |
|--------------------------------------------------------|---------|--------|
| Total Commercial Consumers                             | 98056   | Nos.   |
| Consumers using Conventional Fans                      | 99%     |        |
| Target to replace CF by EE Fans                        | 15%     |        |
| Number of Conventional fan to be replaced per consumer | 3       | Nos.   |
| Total number of Conventional Fans to be replaced       | 39316   | Nos.   |
| Indicative cost of installation                        | 590     | Lakh   |
| Energy saved by replacing Conventional Fans by EE Fans | 1376044 | kWh    |
| Cost of electricity savings                            | 68      | Lakh   |
| Payback period                                         | 8.57    | years  |
| Emission reduction                                     | 1115    | Tonnes |

#### (iii) Replacement of conventional air conditioners with EE star rated ones

About 33 % of the commercial units in Coimbatore City use air conditioning units. Assuming the replacement of 10% of the air-conditioning units with star rated air conditioning units the figures related to instalments and energy savings are given below.

| Table 4.75. Replacement of All conditioners with star fated ones |         |        |  |  |  |  |
|------------------------------------------------------------------|---------|--------|--|--|--|--|
| Particulars                                                      |         | Unit   |  |  |  |  |
| Total Commercial Consumers                                       | 98056   | Nos.   |  |  |  |  |
| Consumers using Conventional ACs                                 | 33%     |        |  |  |  |  |
| Target to replace Conventional ACs by EE star rated ACs          | 10%     |        |  |  |  |  |
| Number of Conventional ACs to be replaced per industrial         | 5       | Nos.   |  |  |  |  |
| unit                                                             |         |        |  |  |  |  |
| Total number of Conventional ACs to be replaced                  | 16326   | Nos.   |  |  |  |  |
| Indicative cost of installation                                  | 4488    | Lakh   |  |  |  |  |
| Energy saved by replacing Conventional ACs by EE Star            | 6612161 | kWh    |  |  |  |  |
| Rated ACs                                                        |         |        |  |  |  |  |
| Cost of electricity savings                                      | 331     | Lakh   |  |  |  |  |
| Payback period                                                   | 13.58   | years  |  |  |  |  |
| Emission reduction                                               | 5356    | Tonnes |  |  |  |  |

### Table 4.73: Replacement of Air conditioners with star rated ones

#### (iv) Replacement of conventional refrigerators with EE star rated refrigerators

Refrigerators in commercial sector are restricted to the food outlets, restaurants, hotels, guest houses, and ice-cream parlors. General trend reveals that the refrigerators of the range of 200-400 W are found in the commercial sector of Coimbatore City.

Approximately 41% of the consumers own a refrigerator and a target of replacing 25% refrigerators has been taken to show the energy saving potential of replacing conventional refrigerators in commercial sector of Coimbatore city.

Table 4.74: Replacement of Conventional Refrigerators with EE Star RatedRefrigerators

| Particulars                                               |         | Unit   |
|-----------------------------------------------------------|---------|--------|
| Total Commercial Consumers                                | 98056   | Nos.   |
| Consumers using Conventional Refrigerators                | 41%     |        |
| Target to replace Conventional Refrigerators by EE Star   | 25%     |        |
| Rated Refrigerators                                       |         |        |
| Number of Conventional Refrigerators to be replaced per   | 1       | Nos.   |
| consumer                                                  |         |        |
| Total number of Conventional Refrigerators to be replaced | 10051   | Nos.   |
| Indicative cost of installation                           | 1131    | Lakh   |
| Energy saved by replacing Conventional Refrigerators by   | 4764051 | kWh    |
| EE Star Rated Refrigerators                               |         |        |
| Cost of electricity savings                               | 238     | Lakh   |
| Payback period                                            | 5       | years  |
| Emission reduction                                        | 3859    | Tonnes |

#### (v) Replacement of conventional water pumps with EE star rated water pumps

About 30% of the commercial units use water pumps. If a target of 25% is made in order to replace the inefficient water pumps with efficient star rated water pumping equipments then the following techno-commercial details ensue which are calculated below.

Table 4.75: Replacement of conventional water pumps with EE star rated water pumps

| Particulars                                           |        | Unit   |
|-------------------------------------------------------|--------|--------|
| Total Commercial consumers                            | 98056  | Nos.   |
| Household using Water Pumps                           | 30%    |        |
| Target to replace Conventional Water Pump by EE Pump  | 25%    |        |
| Number of Conventional Pumps to be replaced per       | 1      | Nos.   |
| household                                             |        |        |
| Total number of Conventional Pumps to be replaced     | 10296  | Nos.   |
| Indicative cost of installation                       | 206    | Lakh   |
| Energy saved by replacing Conventional Water Pumps by | 926629 | kWh    |
| EE Water Pumps                                        |        |        |
| Cost of electricity savings                           | 32     | Lakh   |
| Payback period                                        | 6.35   | years  |
| Emission reduction                                    | 751    | Tonnes |

#### (vi) Summary of EE Strategy in Commercial & Institutional Sector

The estimated energy savings potential from commercial and institutional sector through energy efficiency measures is 58MU in five years, which is about 12% of total target to be achieved. Potential for GHG reduction is 46846 tonnes per year with an investment of Rs. 26717 lakh.

| EE Measures                                                                      | No. of<br>equipments | Investment<br>(INR) | Electricity<br>Saved (MU) | Emissions<br>Saved<br>(Tonnes) |
|----------------------------------------------------------------------------------|----------------------|---------------------|---------------------------|--------------------------------|
| Replacement of 100 watt incandescent with 15 watt CFL                            | 125512               | 188                 | 10                        | 8235                           |
| Replacement of T8/T12 tube lights with T5 FTL                                    | 156890               | 784                 | 4                         | 3507                           |
| Replacement of conventional fans with EE fans                                    | 39316                | 590                 | 1.38                      | 1115                           |
| Replacement of conventional AC with EE star rated AC                             | 16326                | 4488                | 6.61                      | 5356                           |
| Replacement of conventional<br>refrigerators with EE star rated<br>refrigerators | 10051                | 1131                | 5                         | 3859                           |
| Installation of EE water pumps                                                   | 10296                | 206                 | 1                         | 751                            |
| Total                                                                            |                      | 7387                | 28.18                     | 22822                          |

Table 4.76: Summary of EE Strategy in Commercial and InstitutionalSector

#### 4.4.15 EE Strategy for Industrial Sector

Coimbatore has 19779 small-scale industrial units. Majority of these industries are not energy intensive. Energy savings potential lies primarily with lighting and comfort.

#### (i) Replacement of incandescent with CFLs

As per sample survey only 35% of the industries use incandescent bulbs as lighting appliances which need to be replaced by CFLs. Following table indicates the techno-commercial proposition for this replacement.

| able 4.77. Replacement of meanuescent with CFDs in mudstrial sector |          |        |  |  |  |
|---------------------------------------------------------------------|----------|--------|--|--|--|
| Particulars                                                         |          | Unit   |  |  |  |
| Total Industrial Consumers                                          | 19779    | Nos.   |  |  |  |
| Consumers using incandescent bulb                                   | 35%      |        |  |  |  |
| Target to replace incandescent bulb with CFL                        | 80%      |        |  |  |  |
| Number of incandescent bulb to be replaced per consumer             | 25       | Nos.   |  |  |  |
| Total number of incandescent bulb to be replaced                    | 138453   | Nos.   |  |  |  |
| Indicative cost of installation                                     | 277      | Lakh   |  |  |  |
| Energy saved by replacing 100W bulb with 20W CFL                    | 29905848 | kWh    |  |  |  |
| Cost of electricity savings                                         | 1495     | Lakh   |  |  |  |
| Payback period                                                      | 0.19     | Years  |  |  |  |
| Emission reduction                                                  | 24224    | Tonnes |  |  |  |

Table 4.77: Replacement of incandescent with CFLs in Industrial sector

#### (ii) Replacement of T8/T12 by T5 tube lights

The T12 and T8 tube lights are also frequently used in the industrial sector in Coimbatore city. Survey results show that almost 90% consumers use these appliances. The energy saving potential by replacement of T12 and T8 with more efficient T5 tube lights is calculated below assuming a replacement of 90% appliances in target industries. Following table indicates the techno-commercial proposition for this replacement

| Table 1.70. Replacement of 10, 112 tabe ingits               |          |        |
|--------------------------------------------------------------|----------|--------|
| Particulars                                                  |          | Unit   |
| Total Industrial Consumers                                   | 19779    | Nos.   |
| Consumers using T8/T12 tube lights                           | 90%      |        |
| Target to replace T8/T12 by T5 tube lights                   | 90%      |        |
| Number of T8/T12 to be replaced per consumer                 | 40       | Nos.   |
| Total number of T8/T12 tube lights to be replaced            | 640840   | Nos.   |
| Indicative cost of installation                              | 3204     | Lakh   |
| Energy saved by replacing T8/T12(with magnetic ballast) with | 22595363 | kWh    |
| T5 (with electronic ballast)                                 |          |        |
| Cost of electricity savings                                  | 1130     | Lakh   |
| Payback period                                               | 2.84     | Years  |
| Emission reduction                                           | 18302    | Tonnes |

#### Table 4.78: Replacement of T8/T12 tube lights

#### (iii) Replacement of Conventional Fans by EE Star Rated Fans

About 74% of industrial units use conventional fan which should be replaced by star rated energy efficient fans. . Following table indicates the techno-commercial proposition for this replacement.

| Particulars                                            |         | Unit   |
|--------------------------------------------------------|---------|--------|
| Total Commercial Consumers                             | 19779   | Nos.   |
| Consumers using Conventional Fans                      | 74%     |        |
| Target to replace CF by EE Fans                        | 25%     |        |
| Number of Conventional fan to be replaced per consumer | 15      | Nos.   |
| Total number of Conventional Fans to be replaced       | 53972   | Nos.   |
| Indicative cost of installation                        | 810     | Lakh   |
| Energy saved by replacing Conventional Fans by EE Fans | 2590653 | kWh    |
| Cost of electricity savings                            | 130     | Lakh   |
| Payback period                                         | 6       | Years  |
| Emission reduction                                     | 2098    | Tonnes |

#### (iv) Replacement of conventional air conditioners with EE star rated ones

About 13 % of the industrial units in Coimbatore City use air conditioning units. Assuming the replacement of 50% of the air-conditioning units with star rated air conditioning units the figures related to instalments and energy savings are given below.

| Table | 4.80: | Replacement | of Air | conditioners | with | star rated o | ones |
|-------|-------|-------------|--------|--------------|------|--------------|------|
|-------|-------|-------------|--------|--------------|------|--------------|------|

| Particulars                                              |         | Unit   |
|----------------------------------------------------------|---------|--------|
| Total Industrial Consumers                               | 19779   | Nos.   |
| Consumers using Conventional ACs                         | 13%     |        |
| Target to replace Conventional ACs by EE star rated ACs  | 25%     |        |
| Number of Conventional ACs to be replaced per industrial | 5       | Nos.   |
| unit                                                     |         |        |
| Total number of Conventional ACs to be replaced          | 3214    | Nos.   |
| Indicative cost of installation                          | 884     | Lakh   |
| Energy saved by replacing Conventional ACs by EE Star    | 1301705 | kWh    |
| Rated ACs                                                |         |        |
| Cost of electricity savings                              | 65      | Lakh   |
| Payback period                                           | 14      | Years  |
| Emission reduction                                       | 1054    | Tonnes |

#### (v) Summary of EE Strategy in Industrial Sector

Energy Efficiency measures with mere replacement of incandescent bulbs, tubes and inefficient fans in industrial sector of Coimbatore city can save at least 17.44MU energy per year reducing GHG emission by 14130 tonnes of per year.

| EE Measures                                                 | No. of<br>equipments | Investment<br>(INR) | Electricity<br>Saved (MU) | Emissions<br>Saved<br>(Tonnes) |
|-------------------------------------------------------------|----------------------|---------------------|---------------------------|--------------------------------|
| Replacement of 100 watt incandescent with 15 watt CFL       | 138453               | 277                 | 29.91                     | 24224                          |
| Replacement of T12/T8 tube lights with T5 tube lights       | 640840               | 3204                | 22.60                     | 18302                          |
| Replacement of conventional fans<br>with EE star rated fans | 53972                | 810                 | 2.59                      | 2098                           |
| Replacement of conventional AC with EE star rated AC        | 3214                 | 884                 | 1.30                      | 1054                           |
| Total                                                       |                      | 5174                | 56.39                     | 45679                          |

#### Table 4.81: Summary of EE Strategy for Industrial Sector

#### Thermal Energy Conservation in Industrial sector

Coimbatore is famous for its textile industries and engineering output. The industrial sector largely comprises of cotton textile manufacturing related enterprises which constitute 75% of the industrial composition in Coimbatore. The main sources of energy in the Industrial sector are electricity, diesel and petrol and with demand for these expected to rise, especially for diesel; the energy conservation measures in the industrial sector can prove to be beneficial from an economic and environmental point of view. Hence, in this section, strategies that can be easily adopted by energy intensive industries in Coimbatore as a means of abating their energy demand by conserving energy in their manufacturing and other processes is proposed.

Waste Heat Recovery (WHR) is considered as one of the most feasible interventions that can be introduced as an energy efficiency initiative. WHR systems render an ease of energy reuse from processes which generate it by re-routed it into another process obviating wasteful release into the ambience causing possible environmental degradation and also saving costs in the process. Some possible systems that can be used through intervening mechanisms after proper feasibility studies are listed hereunder alongside their corresponding expected benefits.

| waste Heat Recovery – Pressunzed Hot water Generator |                 |  |  |  |  |  |
|------------------------------------------------------|-----------------|--|--|--|--|--|
| D. G. Sets 750 KVA                                   | 2 Nos.          |  |  |  |  |  |
| Exhaust Temperature                                  | 450° C          |  |  |  |  |  |
| Heat Recovery                                        | 470000 Kcal/hr. |  |  |  |  |  |
| Working Hrs. / Day                                   | 8 Hrs.          |  |  |  |  |  |
| Annual Savings                                       | INR 44 Lakh     |  |  |  |  |  |

• Waste Heat Recovery – Pressurized Hot Water Generator

#### • Waste Heat Recovery – Steam Boiler

| D. G. Sets 750 KVA  | 2 Nos.          |
|---------------------|-----------------|
| Exhaust Temperature | 500° C          |
| Heat Recovery       | 380000 Kcal/hr. |

| Annual Savings | INR 44 Lakh |
|----------------|-------------|

| • Waste Heat Recovery – Air Pre-heater on Thermo Pack |                  |  |  |  |  |  |  |
|-------------------------------------------------------|------------------|--|--|--|--|--|--|
| Capacity                                              | 20 Lakh Kcal/hr. |  |  |  |  |  |  |
| FO. Firing Rate                                       | 180 Kg/hr        |  |  |  |  |  |  |
| Exhaust Temperatures                                  | 250 Dec.         |  |  |  |  |  |  |
| Heat Recovery                                         | 65000 Kcal/hr    |  |  |  |  |  |  |
| Annual Savings                                        | INR 12 Lakh      |  |  |  |  |  |  |

Waste Heat Recovery – Steam Boiler on Furnace Exhaust

| Equipment            | Decarb Furnace |
|----------------------|----------------|
| Exhaust Temperatures | 280° C         |
| Heat Recovery        | 22000 Kcal/hr  |
| Annual Savings       | INR 9 Lakh     |

Waste Heat Recovery – Air Pre-heater on Steam Boiler 

| Capacity             | $500 \text{ kg/hr}$ at $40 \text{ kg} / \text{ cm}^2$ |
|----------------------|-------------------------------------------------------|
| Exhaust Temperatures | 350° C                                                |
| Heat Recovery        | 30000 Kcal/hr                                         |
| Annual Savings       | INR 7.5 Lakh                                          |

#### Waste Heat Recovery – Hot Water Generator

| Equipment            | Hot Treatment Furnace    |
|----------------------|--------------------------|
| Exhaust Temperatures | $400^{\circ} \mathrm{C}$ |
| HSD Firing Rate      | 40 kg / hr               |
| Heat Recovery        | 100000 Kcal / hr.        |
| Annual Savings       | INR 16 Lakh              |

Source: http://www.energyconservation.co.in/waste-heat-recovery-systems-on-furnace-case-studies.html

#### 4.4.16 **Solid Waste Management Interventions**

#### Waste to Energy Potential in Coimbatore **(i)**

Estimated solid waste generated in Coimbatore city is 650 MT/day. Potential energy recovery from MSW through different treatment methods could be estimated from its calorific value and organic fraction etc. Since relevant details are not available for Coimbatore, widely used estimates for municipal solid waste in India have been used for a preliminary assessment. However, waste to energy potential for the city is considered as an indicative assessment and not included in the strategy to achieve energy savings goal under solar city programme.

#### (ii) Waste to Energy Potential through thermo-chemical conversion

In thermo-chemical conversion all of the organic matter, biodegradable as well as nonbiodegradable, contributes to the energy output. Total electrical energy generation potential is estimated to be 19 MWe and savings per year with 70% PLF is estimated as 116 MU.

|                                                           |         | Unit    |
|-----------------------------------------------------------|---------|---------|
| Total waste generated                                     | 650     | Tonnes  |
| Net Calorific Value (conservative estimate)               | 2400    | kcal/kg |
| Energy recovery potential (NCV x W x 1000/860)            | 1813953 | kWh     |
| Power generation potential                                | 75581   | kW      |
| Conversion efficiency                                     | 25%     |         |
| Net Power generation potential                            | 18.90   | MWe     |
| Plant Load Factor                                         | 70%     |         |
| Net electrical energy savings potential @70% PLF          | 115.87  | MU      |
| Emission reduction per year                               | 93852   | Tonnes  |
| Total Investment                                          | 13227   | Lakh    |
| MNRE subsidy @ 50% subject to maximum of Rs.300.00 per MW | 5669    | Lakh    |
| State/City/Private Power Producer                         | 7558    | Lakh    |
| Cost savings                                              | 5214    | Lakh    |
| Payback period                                            | 1.45    | Years   |

#### Table 4.82: Waste to Energy through thermo-chemical conversion

#### (iii) Waste to Energy Potential through bio-methanation

In bio-chemical conversion, only the biodegradable fraction of the organic matter can contribute to the energy output. It is estimated that a 7 MWe electrical energy generation is possible from this process which could save about 42 MU of energy every year assuming a 70% of PLF.

|                                                  |           | Unit     |
|--------------------------------------------------|-----------|----------|
| Total waste generated                            | 650       | Tonnes   |
| Total biodegradable volatile solid (VS)          | 30%       |          |
| Typical digestor efficiency                      | 60%       |          |
| Typical bio-gas yield (m3 / kg. of VS destroyed) | 0.80      | CuM/kg   |
| Biogas yield                                     | 93600     | CuM      |
| alorific Value of bio-gas                        | 5000.00   | kcal/CuM |
| Energy recovery potential                        | 544186.05 | kWh      |
| Power generation potential                       | 22674     | kW       |
| Conversion efficiency                            | 30%       |          |
| Net Power generation potential                   | 6.80      | MWe      |
| Plant Load Factor                                | 70%       |          |
| Net electrical energy savings potential          | 41.71     | MU       |
| Emission reduction per year                      | 33787     | Tonnes   |
| Total Investment                                 | 4081      | Lakh     |
| MNRE subsidy @ R.200.00 lakh per MW              | 1360      | Lakh     |
| State/City/Private Power Producer                | 2721      | Lakh     |
| Cost savings                                     | 1877      | Lakh     |
| Payback period                                   | 1.45      | Years    |

#### Table 4.83: Waste to Energy through bio-methanation

#### (iv) Waste to Energy Potential from Sewage Treatment Plant

Liquid waste generated in Coimbatore city is 50 MLD per day. It is estimated that a 1.74 MWe electrical energy generation is possible from Sewage Treatment Plant which could save about 10.7 MU of energy every year assuming a 70% of PLF.

# Table 4.84: Liquid Waste to Energy Potential from Sewage Treatment Plant (STP)

|                                                           |           | Unit       |
|-----------------------------------------------------------|-----------|------------|
| Total waste water generated                               | 50        | MLD        |
| Total biodegradable organic/ Volatile Solid available for | 50        | Tonnes/day |
| Biomethanation                                            |           |            |
| Typical Digestion Efficiency                              | 60%       |            |
| Typical Biogas yield                                      | 0.8       | cum / kg   |
| Biogas yield                                              | 24000     | Cum        |
| Electricity (kWh)                                         | 139534.88 | kWh        |
| Capacity of the plant                                     | 5813.95   | KW         |
| Conversion Efficiency                                     | 30%       |            |
| Total Electricity Generated                               | 1.74      | MWe        |
| Plant Load Factor                                         | 70%       |            |
| Net electrical energy savings potential                   | 10.70     | MU         |
| Emission reduction per year                               | 8663      | Tonnes     |
| Total Investment                                          | 1046.51   | Lakh       |
| MNRE subsidy @40% subject to maximum of Rs.200.00         | 348.84    | Lakh       |
| lakh/ MW                                                  |           |            |
| State/City/Private Power Producer                         | 697.67    | Lakh       |
| Cost savings                                              | 481.29    | Lakh       |
| Payback period                                            | 1.45      | Years      |

### 5. Tiruchirapalli City

### 5.1 City Profile

Tiruchirapalli, also known as Tiruchi or Trichy is the fourth largest city in the southern State of Tamil Nadu. It is centrally located in the state and is situated on the head of the Kaveri delta on the banks of the River Kaveri. Tiruchirapalli due its location has enjoyed historic importance since the time of early Cholas. Ruled at one point of history or the other by almost all the major south Indian dynasties from Pandyas to Marathas and the Delhi Sultanate, Tiruchirapalli fell into the hands of the British in 1801 after several failed attempts before. During the British control, Trichinopoly, as it was known by the British, emerged as an important city mainly because of its central location in the state at the junction of North-South and East-West major transport routes but also central focal point connecting adjoining districts.

While at one time the population of the city was second only to the then capital Madras, the city currently ranks as the fourth most populous city in Tamil Nadu. Development of an assortment of industries like Heavy Boiler plant, Cotton mills and Structural steel works etc has pushed Trichy's economic prosperity further. Its evolution as an employment and educational hub has increased the urbanization taking place. As a strategic city for the confluence of rail, road and air communication pathways Trichy which is also the district headquarters.

#### 5.1.1 Details of Location, Geography and Climate of Tiruchirapalli

#### Location

Centrally located perhaps not just within the state but also the south Indian peninsula, the city of Trichy is situated at 10 ° N lat and 78 ° E long and is 88 m above sea-level. The River Kaveri cuts through the district with Trichy located on one side of its bank separated from Srirangam, another important city, on the other side. Within a 60km to 160km vicinity of other important towns of within the district, Trichy is well connected via rail and road.



Figure 5.1: Location of Tiruchirapalli

#### Geography

Trichy is situated on the banks of the River Kaveri such that the city limits extend across the Kaveri delta. Formed of rich alluvial soil washed up by the river, the fertile plains gently slope towards the west. Crystalline rocks like the Rockfort and Golden Rock are liberally sprinkled across the city.

Various tributaries of River Kaveri penetrate the city and sustain the lucrative paddy cultivation all year round. In addition, the fertile land supports Mango and Coconut cultivation too. Trichy is spread over an area of 147 square km.

#### Climate

Tiruchirapalli has a characteristic hot and dry climate for most of the year. The city experiences high temperature and low humidity especially during the summer months that extend from March to May. The months from September to November are wet and balmy. The typical temperature range of the city is 20° C minimum and 40°C maximum and it receives a rainfall of 70mm to 77mm annually.

The South West Monsoon begins in June and increases the rainfall until August and September. From December to January, the city experiences the coldest months after a windy period that is followed by another burst of South West Monson in May.

| Temperature Profile (° C) |     |     |     |     |     |     |     |     |     |     |     |     |
|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                           | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| MAX                       | 31  | 33  | 36  | 37  | 38  | 37  | 36  | 36  | 35  | 33  | 30  | 30  |
| MIN                       | 21  | 22  | 23  | 26  | 26  | 26  | 26  | 25  | 25  | 24  | 23  | 21  |

Figure 4.2.1: Temperature and Rainfall profile of Tiruchirapalli

| Rainfall Profile |     |     |     |     |     |     |     |     |     |     |     |     |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| in mm            | 14  | 12  | 24  | 44  | 75  | 48  | 59  | 73  | 122 | 161 | 197 | 92  |

Source: http://www.worldweatheronline.com/Tiruchchirappalli-weather-averages/Tamil-Nadu/IN.aspx

#### Administrative profile

Tiruchirapalli city municipality was upgraded to Municipal Corporation level in 1994. The Corporation currently oversees the administration of 4 zones subdivided into a total of 60 wards. The Corporation is headed by the Mayor elected directly by the citizens of the city while its duties are executed by the Commissioner who presides over Senior Officers in charge of different departments of the Corporation like Administration, Engineering, Public Health, Accounts, Planning and Revenue. Following are brief notes on the civic services undertaken by the Corporation.

#### Water Supply

Water in Tiruchirapalli is supplied through 6 head water works of which 4 are maintained by the Corporation and 2 are contracted to other agencies. In total there are about 58 service reservoirs in the entire district of which 19 are located in the city. About 83 million liters per day (MLD) are supplied to the city which is about 103 liters per capita per day (lpcd). In addition, two state sanctioned projects for water supply were completed in 2010 and three more are currently underway through which 73 rural habitations around the city will be benefitted.

#### Solid Waste Management and Sewerage

Tiruchirapalli city Corporation has brought about a lot of improvement in its waste management services and is the first city in the country to have obviated open defecation issues in the slums. In addition, the Corporation facilitates door-to-door collection and scientific disposal and waste segregation of about 400 tonnes of solid waste that is generated by the city each year. There are three transit stations at Gandhi market, Central bus stand and Chatram bus stand with its principal landfill site allocated at Ariyamangalam.

Waste water or Sewerage management in Tiruchirapalli and Srirangam are under the administrative control of State Water Board while other sewerage management of other two zones is managed by the Tiruchirapalli Corporation.

#### **Street Lighting**

There are about 29,000 street lights maintained by the Tiruchirapalli city Corporation. Of these about 80% are tube lights.

#### **Road and Transport**

Well connected by rail and road, Tiruchirapalli city has a road network of 941 km. The national Highways NH 45, NH 45B, NH 67, NH 210 and NH 227 pass through the city. Under the National Roads Schemes, the city Corporations aims to increase the road coverage by 186 km.

#### **Public Health**

The public health department that also oversees the solid waste management in the city maintains 13 maternity centers, 5 urban health posts, and 2 urban family welfare centers, 18 dispensaries (14 allopathic and 4 siddha).

#### **Infrastructure and Facilities**

The Corporation of Tiruchirapalli maintains and runs 31 elementary schools, 27 middle schools and 2 high schools and one higher secondary school. In addition, the city is serviced by an airport that is the second busiest in the state and two bus stations, one of

which serves the entire South Indian bus network. In addition, the Southern Railways has its five branches in the city connecting it to various locations in South India.

#### **Demographic trends**

According to 2001 census findings, the population under Tiruchirapalli corporation limits was 7, 50,066 and the population under urban agglomerate was 8, 66,354. According to 2011 census finding, the Tiruchirapalli population was 1,021,717 registering a decadal growth rate of 17.2%. Following are the population trends from 1961 to 2011. The city recorded a literacy rate of 91.20% higher than Coimbatore and the sex ratio in the city was recorded as 1015. Following tables indicate the current demographics of the region.

| Year | Population | Decadal Growth % |
|------|------------|------------------|
| 1961 | 415759     | -                |
| 1971 | 534966     | 28.7             |
| 1981 | 644558     | 20.5             |
| 1991 | 755173     | 17.2             |
| 2001 | 866354     | 14.7             |
| 2011 | 1021717**  | 17.9             |

 Table 5.1: Population growth in Tiruchirapalli\*

\*Trichy Master Plan and Tiruchirapalli Corporation \*\*Census of India 2011(LPA)

#### Table 5.2: Population data\*

| Total Persons                      | 1021717 |
|------------------------------------|---------|
| Males                              | 507180  |
| Females                            | 514537  |
| Sex ratio                          | 1015    |
| Total Persons below 6 years in age | 89176   |
| Males below 6 years in age         | 45321   |
| Females below 6 years in age       | 43855   |
| Sex ratio(0-6)                     | 968     |
| Total literates                    | 850484  |
| Literate Males                     | 437399  |
| Literate Females                   | 413085  |
| Male Literacy rate                 | 94.70%  |
| Female Literacy rate               | 87.76%  |

\*Census of India 2011

#### Socio-economic profile

On account of its central location, Tiruchirapalli has not just rendered a confluence of the North-South and East-West transport and trade routes, the city is especially important because of the railway locomotive industries and heavy boiler plants in addition to a rice mills and chemical plants located here. Tiruchirapalli is a major engineering hub and has attracted thousands of engineers who graduate mainly from one of the many educational centers and universities in the city, some of these universities are the oldest in the country. In recent years, Tiruchirapalli like almost all south Indian cities has evolved into a software hub with its exports reaching INR 26 lakh annually. Following tables indicate the

stats related to employment (non-exhaustive) and the profile of industrial produce in terms of capacity (units) under operation (non-exhaustive).

#### **Employment statistics\***

| Sector                            | Number of Persons |
|-----------------------------------|-------------------|
| Agriculture, Food based           | 1862              |
| Textiles industry                 | 1453              |
| Chemical industry(incl. Leather)  | 3294              |
| Machinery and Transport equipment | 2692              |
| Services                          | 8941              |

\*Tiruchirapalli District Collectorate (non exhaustive list)

#### **Industry profile\***

| Type of Industry output                 | Capacity (units) |
|-----------------------------------------|------------------|
| Food products (incl. other consumables) | 62               |
| Garments and other textile based        | 585              |
| Paper and Wood products                 | 7                |
| Electrical and Transport Machinery      | 5                |
| Leather, Chemical and Metal             | 88               |
| Services based                          | 50               |
| Small Scale Industries                  | 802              |

\**Tiruchirapalli District Collectorate (non exhaustive list)* 

#### **Ecological and Forest Profile**

Tiruchirapalli is rendered fertile by the alluvium carried by the River Kaveri. The city boasts of a rich ecological heritage mainly consisting of coconut trees and Mangroves. The principal crops that are grown here are paddy, banana and sugarcane. The residential and agricultural areas are densely intermingled throughout the city.

The city has several parks and recreational playfields that promote green cover in the city. The forest cover to the North West of the district falls under the Trichy circle which comes under the administrative control of the Tamil Nadu State Forest Department. The table below indicates the land use pattern and green cover in the city from the latest statistics available.

| abie 0.0. Dana abe pattern |                 |  |  |
|----------------------------|-----------------|--|--|
| Sector                     | % of total area |  |  |
| Residential                | 36              |  |  |
| Commercial                 | 2               |  |  |
| Industrial                 | 4               |  |  |
| Educational                | 3               |  |  |
| Public and Semi Public     | 7               |  |  |
| Agriculture (Wet and Dry)  | 30              |  |  |
| Transportation             | 6               |  |  |
|                            |                 |  |  |

Table 5.3: Land use pattern\*

\*Trichy Master Plan 2003

| Table 5.4: Green cover*  |                 |  |  |  |  |
|--------------------------|-----------------|--|--|--|--|
| Parks                    | 24 No.s         |  |  |  |  |
| Water bodies             | 19.17 square km |  |  |  |  |
| *Trichy Master Plan 2003 |                 |  |  |  |  |

#### **Energy profile**

The main energy consuming industries in Tiruchirapalli are the Chemical and Distillery based and BHEL and railway locomotive workshops. In addition to the domestic energy demand, the Corporation also oversees electricity provision to small scale industrial set ups and rural electrification. In the district, while 31% of electricity demand arises from Agriculture, almost 40% arises from domestic needs.

#### 5.2 Energy Consumption Profile of Tiruchirapalli

#### Introduction

This section deals with the assessment of the energy consumption patterns in Tiruchirapalli city. The identification of energy sources specific to each sector in the city i.e., Residential, Commercial, Industrial and Municipal is being dealt with as follows.

#### **Total Electricity Consumption in Tiruchirapalli**

Tiruchirapalli is relatively less metropolitan than Coimbatore but as a result of its geographical location it has become an important focal point for transport routed that connect the city to important neighbouring cities. The domestic sector is the main consumer of energy and electricity is obviously the main source.

| Sector                                  | Electricity Consumption (Million kWh) |         |  |  |
|-----------------------------------------|---------------------------------------|---------|--|--|
|                                         | 2010-11                               | 2011-12 |  |  |
| Domestic                                | 240.52                                | 591.37  |  |  |
| Commercial                              | 177.82                                | 504.24  |  |  |
| Industrial                              | 34.04                                 | 86.49   |  |  |
| Municipal Sector                        | 278.09                                | 832.33  |  |  |
| <b>Total Electrical Energy supplied</b> | 730.47                                | 2014.43 |  |  |

Table 5.5: Sector-wise energy consumption in Tiruchirapalli

#### 5.2.2 Fuel consumption in Trichirapalli

In absence of clear sector specificity in the data sourced from official and semi-official sources, the information contained in this section is non classified into sectors and hence a relative comparison between different sectors cannot be established. Nevertheless, the data is comprehensive in its compilation and provides an overall snapshot of the fuel consumption in the city over a two year period as monitored by Indian Oil Corporation.

| Table | 5.6: | Petrol | consumpt | tion in | Tiruchira | palli |
|-------|------|--------|----------|---------|-----------|-------|
|-------|------|--------|----------|---------|-----------|-------|

| Fuel        | 2010-11 | 2011-12 |
|-------------|---------|---------|
| Petrol (kL) | 64346   | 72931   |
|             |         |         |

(Source: ICLEI 2012)

| Table 5.7: Diesel consumption in Tiruchirapalli |         |         |  |  |  |
|-------------------------------------------------|---------|---------|--|--|--|
| Fuel                                            | 2010-11 | 2011-12 |  |  |  |
| Diesel (kL)                                     | 166752  | 198526  |  |  |  |

(Source: ICLEI 2012)

#### E. Waste

Waste management practices by the Tiruchirapalli Municipal Corporation have effectively rectified the erstwhile issue of poor sanitation in the community sector. Having achieved the first open defecation less sanitation in India, Tiruchirapalli has introduced facilities like door-to-door collection and scientific disposal and waste segregation into its activity portfolio. The city has 38 primary collection points, 11 transfer stations and 60 corporation vehicles being used for the waste management. Waste generated from domestic sector is 85% and 15% commercial waste.

The city has a waste water treatment or sewerage water treatment plant at Panchapur which caters as the sole effluent treatment center in the city and works at an optimum capacity of 56 MLD. Following is the breakdown waste generation in the city.

| Table 5.6. waste generation from city activitie |                |  |
|-------------------------------------------------|----------------|--|
| Year                                            | Waste produced |  |
| 2006-2007                                       | 382 MT         |  |
| 2007-2008                                       | 432 MT         |  |
| 2008-2009                                       | 432 MT         |  |
| 2009-2010                                       | 432 MT         |  |
| 2010-2011                                       | 405 MT         |  |

Table 5.8: Waste generation from city activities

#### 5.2.3 Energy Consumption in Government sector

#### A. Energy used in Street Lighting in Tiruchirapalli

The Corporation maintains and operated the street lights within its jurisdiction. Currently, there are about 28, 657 street lights. The breakdown of the equipments used for this purpose is detailed below:

| Equipment                | Number |
|--------------------------|--------|
| 40 watts tube lights     | 27968  |
| 70 watts SV lamps        | 38     |
| 150 watts SV lamps       | 29     |
| 500 watts HL             | 2      |
| 150 watts MHL fittings   | 4      |
| 400 watts MHL fittings   | 0      |
| 4*24 watts CFL           | 22     |
| 1*35 watts CFL           | 230    |
| 2*36 watts CFL           | 132    |
| 65 watts CF lamps        | 15     |
| 2*11 watts CF Lamps      | 171    |
| High mast (16 m and 30m) | 46     |

Table 5.9: Equipments used for street lighting in Tiruchirapalli

#### B. Energy used in Water Supply

Water from Cauvery is the predominant source of water for city activities. The Corporation expended about 13.11 MU of energy in pumping the water to overhead tanks at different locations in the city in 2009-10. The electricity supply for water facilitation in the city over the last few years is as shown below:

| Year      | Electricity consumption (MU) |  |  |  |  |  |  |
|-----------|------------------------------|--|--|--|--|--|--|
| 2006-2007 | 12.19                        |  |  |  |  |  |  |
| 2007-2008 | 13.19                        |  |  |  |  |  |  |
| 2008-2009 | 12.28                        |  |  |  |  |  |  |
| 2009-2010 | 13.11                        |  |  |  |  |  |  |

#### C. Energy used in lighting in Corporation buildings and facilities

Corporation also incurs energy expenditure due to day-to-day operation of official buildings through general lighting and powering of equipments. Following is the electricity consumption in Corporation buildings over the last few years.

| Year      | Electricity consumption (MU) |
|-----------|------------------------------|
| 2006-2007 | 2.91                         |
| 2007-2008 | 3.02                         |
| 2008-2009 | 2.38                         |
| 2009-2010 | 2.46                         |

#### **D.** Energy used in Corporation Transport

Use of diesel is more prevalent than use of petrol in Corporation vehicles that aid in execution of activities including transport for personnel mobility, lorries, garbage trucks and pick up vehicles that facilitate in SWM activities in the city. Besides, repair and maintenance of Corporation assets is performed and involves inevitable and extensive travel. Following a breakdown of the fuel usage in the Municipal sector:

Table 5.10: Fuel consumption by Municipal sector in Tiruchirapalli

| Fuel        | 2010-11 |
|-------------|---------|
| Petrol (kL) | 8.5     |
| Diesel (kL) | 651     |

#### 5.3 GHG Emissions Inventory of Tiruchirapalli

Based on this inventory, the total emissions from the city that corresponded to the Municipal sector were comparatively lower. A precise comparative analysis is not possible because the data that has been used from different sources corresponded to different years. However, in a particular year, it is clear that the amount of emissions from municipal activities was much lower indicating carbon efficiency of the Corporation activities.

#### **Community level GHG emissions**

The total emissions from the Community sector in Tiruchirapalli are 782423.65 tCO<sub>2</sub>e of which electricity consumption.

|                                        |                               | <b>6</b> ]           |
|----------------------------------------|-------------------------------|----------------------|
| Sector                                 | Equiv. CO <sub>2</sub> tonnes | % of total emissions |
| Residential                            | 451.32                        | 50.0                 |
| Commercial                             | 384.83                        | 42.7                 |
| Industrial                             | 66.01                         | 7.3                  |
| Total Community level Emissions due to | 902.16                        | 100.00               |
| Electricity                            |                               |                      |
| Waste                                  | 14,287.00                     | -                    |
| Overall fuel consumption               | 767234.49                     | -                    |
| Total Emissions                        | 782423.65                     | -                    |

Table 5.11: Community level Carbon Emissions (tCO2e)

#### Residential

The residential sector GHG emission due to electricity usage only was 451.32 tonnes (29 %) to total emissions from community electricity consumption in 2011-12. This however does not include fuel data as it was available without sector wise segregation from the source.

#### Commercial

The commercial sector GHG emission was 384.83 tonnes (25%) to total emissions from community electricity consumption in 2011-12. This however does not include fuel data as it was available without sector wise segregation from the source.

#### Industrial

The industrial sector GHG emission was 66.01 tonnes (4%) to total emissions from community electricity consumption in 2011-12. This however does not include fuel data as it was available without sector wise segregation from the source.

#### **Total fuel consumption**

The transportation sector included, the overall fuel data was available in bulk indicating an overall GHG emission of 767234.49 tonnes of  $CO_2e$  in 2011-12. Following table lists the emissions attributed to overall fuel consumption in the city.

| rasio origi oronan raor consumption related Emissions (2011-12) |                               |                          |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------|--------------------------|--|--|--|--|--|--|--|
| Fuel                                                            | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |  |  |  |  |  |  |  |
| Diesel                                                          | 586450.54                     | 76.44                    |  |  |  |  |  |  |  |
| Petrol                                                          | 180783.95                     | 23.56                    |  |  |  |  |  |  |  |
| <b>Overall fuel consumption</b>                                 | 767234.49                     | 100                      |  |  |  |  |  |  |  |

Table 5.12: Overall fuel consumption related Emissions (2011-12)

#### Waste

Tiruchirapalli has three waste management transit stations at Gandhi market, Central bus stand and Chatram bus stand with its principal landfill site allocated at Ariyamangalam. The Corporation on an average receives 400 MT of waste each day which collected through door-to-door collection services and segregated before being disposed in the managed landfill site. The following emissions calculation is based on the latest data obtained from the Corporation.

Table 5.13: Waste Greenhouse Gas Emissions (2009-10)

| Туре                  | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |  |  |  |  |  |  |
|-----------------------|-------------------------------|--------------------------|--|--|--|--|--|--|
| Municipal Solid Waste | 14,287.00                     | 100                      |  |  |  |  |  |  |
| Subtotal Waste        | 14,287.00                     | 100                      |  |  |  |  |  |  |

#### **Government Level GHG emissions**

As per the framework of the ICLEI protocol, the activities of the Corporation that contribute to GHG emissions are estimated as a separate entity. The total emissions arising from Corporation activities are about tonnes of  $CO_2$ . Following table gives details of the activities and their related emission calculations for the latest data that could be availed from the authorities. Note that there may occur overlap based in the manner the data accounting is performed.

| Sector     | tCO <sub>2</sub> e | Year    |
|------------|--------------------|---------|
| Facilities | 20542.47           | 2010-11 |
| Buildings  | 1877.21            | 2010-11 |
| Transport  | 1743.76            | 2009-10 |

Table 5.14: Government level Carbon Emissions (tCO2e)

#### Facilities

Facilities like illumination of public precincts through street lights and traffic lights are some of the service that the Corporation is responsible and that generates greenhouse gasses. In Tiruchirapalli, while water supply is under the jurisdictional control of the Corporation, sewerage pumping which is the other activity that causes GHG emissions is controlled by the State water board and hence according to the protocol being followed is not included hereunder. Following table details the activities and the emissions arising from each.

| Activity            | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|---------------------|-------------------------------|--------------------------|
| Street lighting     | 8,661.11                      | 42.16                    |
| Water supply        | 10,004.15                     | 48.70                    |
| Sewerage pumping    | 1,877.21                      | 9.14                     |
| Subtotal Facilities | 20,542.47                     | 100.00                   |

Table 5.15: Facilities Greenhouse Gas Emissions (2010-11)

#### Buildings

Corporation buildings and the equipments therein also become a source of GHG emissions when powered through electricity. The following table details the relevant emissions from this activity.

| <u>abie 0.10. Dunumgs dicennouse das Dinissions (2010-11)</u> |                               |                          |  |  |  |  |  |  |  |
|---------------------------------------------------------------|-------------------------------|--------------------------|--|--|--|--|--|--|--|
| Activity                                                      | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |  |  |  |  |  |  |  |
| Illumination                                                  | 1,877.21                      | 100                      |  |  |  |  |  |  |  |
| Subtotal Buildings                                            | 1,877.21                      | 100                      |  |  |  |  |  |  |  |

#### Table 5.16: Buildings Greenhouse Gas Emissions (2010-11)

#### Transport

In Tiruchirapalli, the emissions due to Corporation owned transport are mostly due to diesel than petrol. Details of the same are provided in the table below. Please note that the latest information available from the Corporation was from 2009-10.

#### Table 5.17: Transport Greenhouse Gas Emissions (2009-10)

| Fuel               | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|--------------------|-------------------------------|--------------------------|
| Petrol             | 24.74                         | 1.3                      |
| Diesel             | 1,865.75                      | 98.69                    |
| Subtotal Transport | 1,890.49                      | 100.00                   |

#### 5.4 Suggested Low Carbon Action Plans

#### **Renewable Energy Resource Assessment**

A preliminary assessment has been done for solar, wind and biomass resources and energy recovery potential from municipal solid waste and sewage treatment plant. It should be noted here that biomass data is for entire Trichy district and there is no hydro potential in the city.

#### **Solar Radiation**

Trichy (Latitude 10° 48' N, Longitude 78° 41' E) receives good amount of solar radiation owing to its southern location in the Indian peninsula.

# Table 5.18: Monthly Averaged Insolation Incident on a Horizontal Surface(kWh/M²/Day)

| Source                     | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| NASA Satellite data        | 4.74 | 5.74 | 6.47 | 5.9  | 5.81 | 5.29 | 5.02 | 5.2  | 5.39 | 4.58 | 4.09 | 4.22 | 5.21   |
| <b>MNRE Solar Resource</b> | 4.70 | 5.68 | 6.39 | 5.85 | 5.70 | 5.18 | 4.92 | 5.08 | 5.32 | 4.53 | 4.05 | 4.18 | 5.21   |



Figure 5.2: Annual Solar Radiation profile in Trichy

### Wind Energy

There hasn't been any wind speed measurement undertaken at Trichy as yet and the only wind data available has been satellite referenced by C-WET at  $100W/m^2$ .

#### **Biomass Resource**

Biomass resource for Trichy city is not available separately. However, the data is available at district level and presented in the table below. Major agricultural products of the district are Tapioca, Paddy and Maize. The potential of power generation for biomass is estimated to be 102.3 MWe for the entire district<sup>43</sup>. The city had an installed biomass capacity of 18 MW as of 2010. A detailed city-specific assessment needs to be undertaken to establish the biomass potential in the city.

| District | Area  | Сгор       | Biomass    | Biomass | Power     | Biomass   |
|----------|-------|------------|------------|---------|-----------|-----------|
|          | (kHa) | Production | Generation | Surplus | Potential | Class     |
|          |       | (kT/Yr)    | (kT/Yr)    | (kT/Yr) | (MWe)     |           |
| Trichy   | 65.1  | NA         | 98.5       | 65      | 9.1       | Forest &  |
|          |       |            |            |         |           | wasteland |
| Trichy   | 124.8 | 743.2      | 1543.0     | 718.9   | 93.2      | Agro      |

#### Table 5.19: Biomass Resource

#### **Small Hydro Power**

The Ponnanaiyar project in the district has 20kW capacity. The city itself does not have any potential SHP sites.

#### Waste generation

Waste generation data for Trichy Municipal area for the last 5 year is presented in the table given below. No segregation was available.

<sup>43</sup> Biomass Atlas India-http://lab.cgpl.iisc.ernet.in/Atlas/

| Year      | Solid waste Generation<br>(MT/year) |
|-----------|-------------------------------------|
| 2006-2007 | 382 MT                              |
| 2007-2008 | 432 MT                              |
| 2008-2009 | 432 MT                              |
| 2009-2010 | 432 MT                              |
| 2010-2011 | 432 MT                              |

#### Table 5.20: Solid Waste Generation Data

#### Liquid Waste from Sewage Treatment Plant

The city has one STP that treats a capacity of 88.64 MLD.

#### **RE Strategy for Residential sector**

The residential sector in Trichy is the largest consumer of electricity. The residential sector roughly consumes 240.52 MU of electricity which is 63.33% of total electricity consumption in Trichy city.

#### (i) Installation of Solar Water Heating System

The target in 5 years for introduction of SWHs is set at 80% of residential consumers who are already using electric geysers for their daily hot water requirement estimated at 11% of the total population of the city. Introduction of solar water heating system could save up to 35.4MU energy per year. Energy savings and emissions reduction potential is presented in the table below.

| Particulars                                              |         | Unit   |
|----------------------------------------------------------|---------|--------|
| Total Residential household                              | 261885  | Nos.   |
| Total Residential household after being accounted for in |         |        |
| apartments                                               | 255765  | Nos.   |
| Residential household using geysers                      | 11%     |        |
| Target to replace electric geyser by SWH in 5 years      | 80%     |        |
| Average size of domestic SWH (2 sqm collector area)      | 100/125 | LPD    |
| Number of SWH to be installed in five years              | 22507   | Nos.   |
| Total collector area in sqm                              | 45015   | Sqm    |
| Total energy saved in five years                         | 35.4    | MU     |
| Indicative cost of installation                          | 5626.83 | Lakh   |
| MNRE subsidy @Rs.3300.00 per sqm                         | 1485.48 | Lakh   |
| Cost of energy savings                                   | 1240.72 | Lakh   |
| Payback period                                           | 3       | years  |
| Emission reduction in five years                         | 28714   | Tonnes |

Table 5.21: Target for SWHs installation in Trichy City

#### (ii) Use of Solar cookers (Box and dish type)

Both box type solar cooker and dish type solar cooker can be promoted in the urban areas. Box type solar cooker is an ideal device for domestic cooking during most of the year, except for the monsoon season and cloudy days. It however cannot be used for frying or chapatti making. It is durable and simple to operate. On the other hand, dish type solar cooker can be used for indoor cooking. The stagnation temperature at the bottom of the cooking pot could be over  $300^{\circ}$ C depending upon the weather conditions. The temperatures attained with this cooker are sufficient for roasting, frying and boiling. Regular use of a box type solar cooker may save 3-4 LPG cylinders per year. The use of solar cooker to its full capacity may result in savings up to 10 LPG cylinders per year at small establishments. Setting a target of 15% residential consumer to adopt solar cooker (75% box type and 25% dish type) in the 5 years period, a total of 0.83 million kg of LPG could be saved, reducing 2878 tonnes of GHG from Trichy city (considering specific emission from LPG as 0.24 kg CO<sub>2</sub> per kWh).

| Particulars                                                 |        | Unit   |
|-------------------------------------------------------------|--------|--------|
| Total Residential household                                 | 261885 | Nos.   |
| Household having facility to install a solar cooker         | 30%    |        |
| Target for introducing of solar cooker in 5 years           | 15%    |        |
| Number of Solar Cooker to be installed in 5 years plan      | 11785  | Nos.   |
| Average savings of LPG domestic cylinder per year per solar |        |        |
| cooker (14kg)                                               | 5      | Nos.   |
| Total LPG saved in five years                               | 824938 | Kg     |
| Total energy saved in five years                            | 11.99  | MU     |
| Indicative cost of installation (75% box type & 25% SK-14)  | 309.35 | Lakh   |
| MNRE subsidy for solar cooker @30%                          | 92.81  | Lakh   |
| Cost of energy savings                                      | 206.23 | Lakh   |
| Payback period                                              | 1.05   | years  |
| Emission reduction in five years                            | 2878   | Tonnes |

Table 5.22: Target for introducing solar cooker in Trichy City

#### (iii) Solar lanterns to replace kerosene lamps

Solar lantern has the average capacity of providing three hours of continuous light from a single charge per day, and can work as source of light for poor families without electricity. Kerosene is the main source of general lighting in poor families in Trichy particularly during load shedding hours and assuming that 8% of population use kerosene lanterns during load shedding to illuminate their houses. Average consumption of kerosene per household is 3 litres per month. Assuming a household uses 3-4 lanterns, consumption of one lantern will be about 3-4 litres per month. Targeting 15% of population to replace at least one kerosene lantern with solar about 0.11 million litres of kerosene could be saved reducing 287 tonnes of GHG per year. Detailed techno commercial is provided in the table below.

| able 5.25. Target for incroducing solar fanceins in frieny cit, |        |        |  |  |  |
|-----------------------------------------------------------------|--------|--------|--|--|--|
| Particulars                                                     |        | Unit   |  |  |  |
| Total Residential household                                     | 261885 | Nos.   |  |  |  |
| Residential household use kerosene lamps                        | 8%     |        |  |  |  |
| Target to replace kerosene lamp in 5 years                      | 15%    |        |  |  |  |
| Number of SL to be installed in 5 years plan                    | 3143   | Nos.   |  |  |  |
| Total kerosene lamp replaced                                    | 3143   | Nos.   |  |  |  |
| Indicative cost of installation                                 | 94.28  | Lakh   |  |  |  |
| Kerosene saved                                                  | 113134 | Liters |  |  |  |
| Savings in terms of Electricity                                 | 1.14   | MU     |  |  |  |

 Table 5.23: Target for introducing solar lanterns in Trichy City

| Cost of kerosene savings         | 22.63 | Lakh   |
|----------------------------------|-------|--------|
| MNRE subsidy @Rs.81.00 per Wp    | 25.46 | Lakh   |
| Payback period                   | 3.0   | years  |
| Emission reduction in five years | 287   | Tonnes |

#### (iv) Use Solar Home Systems (SHS)

A Solar Home System is a fixed indoor lighting system and consists of solar PV module, battery and balance of systems. Capacity of such system could be of 18Wp, 37Wp and 74Wp for different configuration. The luminaries used in the above systems comprise compact fluorescent lamp (CFL) of 7 W / 9 W / 11 W capacities respectively. The fan is of DC type with less than 20 W rating. One Battery of 12 V, 40 / 75 Ah capacity is also provided with SPV modules of 37Wp / 74Wp as required. The system will work for about 4 hours daily, if charged regularly. The Solar Home Lighting systems have been proposed to replace kerosene lamps used by 8% population in Trichy during load shedding hours. A 74Wp Solar Home System can replace 3-4 kerosene lamps with 4-5 hours backup hence replacing entire need of kerosene, which is estimated at an average of 3 liters per month per household. Assuming 20% replacement in the planned 5 years period an estimated amount of 659 kiloliters of kerosene replacement with Solar Home Systems and financial implication thereon is indicated in the table below.

| Particulars                                   |        | Unit   |
|-----------------------------------------------|--------|--------|
| Total Residential household                   | 261885 | Nos.   |
| Residential household use kerosene lamps      | 8%     |        |
| Target to replace kerosene lamp in 5 years    | 20%    |        |
| Number of SHS to be installed in 5 years plan | 4190   | Nos.   |
| Total kerosene lamp replaced                  | 16761  | Nos.   |
| Indicative cost of installation               | 670.43 | Lakh   |
| Kerosene saved                                | 659    | kL     |
| Savings in terms of Electricity               | 7      | MU     |
| Cost of kerosene savings                      | 132    | Lakh   |
| MNRE Subsidy @Rs.81.00 per Wp                 | 251    | Lakh   |
| Payback period                                | 3.2    | years  |
| Emission reduction in five years              | 1673   | Tonnes |

Table 5.24: Target for introducing solar home system in Trichy City

#### (v) Using Solar PV for Home Inverters

Use of solar panels to charge Home Inverter system could be an attractive option as standby power supply system during load shedding hours. The power supply situation in Trichy is fairly better than Coimbatore and the city faces power cuts of up to 3-4 hours per day. Assuming that 13% of households who are already using inverters will adopt the 250  $W_p$  solar PV systems to charge their inverter battery, an aggregate of 1277 kWp solar PV systems could be installed in the residential buildings, which will generate 1MU green energy per year and reduce the load demand and emission by 1551 tonnes per year. It is expected that MNRE will provide Rs. 57 per  $W_p$  in subsidy for these systems. The potential of energy savings, green house gas emission reduction and budgetary financial implication is indicated in the table below.

| Particulars                                                  |        | Unit   |
|--------------------------------------------------------------|--------|--------|
| Capacity of solar PV system for Home Inverter                | 250    | Wp     |
| Indicative cost of incorporating Solar PV to Home Inverter   | 43750  | INR    |
| Total Residential household                                  | 261885 | Nos.   |
| Residential household that use Inverter during load shedding | 13%    |        |
| Target to introduce solar charger for inverter in 5 years    | 15%    |        |
| Number of solar inverter to be installed in 5 years plan     | 5107   | Nos.   |
| Total PV capacity installed                                  | 1277   | kWp    |
| Total Energy generated by PV arrays in five years            | 2      | MU     |
| Cost of energy saved                                         | 67     | Lakh   |
| Indicative cost of installation                              | 2234   | Lakh   |
| MNRE subsidy @Rs.57.00 per Wp                                | 728    | Lakh   |
| Payback period                                               | 22     | years  |
| Emission reduction in five years                             | 1551   | Tonnes |

Table 5.25: Target for introducing Solar PV for Home Inverters in Trichy City

#### (vi) Using Solar PV for replacement of DG/ Kerosene Generator sets

Due to poor power supply situation, assuming that about 6% of resident of Trichy use typically 5-10kW DG/ kerosene generator sets during the load shedding hours. Solar PV power packs can be used to replace those polluting generator sets with high operating cost. A 1000  $W_p$  solar PV power pack has been considered for an average household in Trichy. For 5-year framework 10 % households have been taken into consideration for replacement of DG /kerosene sets with solar PV systems with a target to save 246 kilo liters of diesel on an average per year. This would reduce GHG emissions in tune of 3118 tonnes per year.

 Table 5.26: Target for replacement of diesel generator sets with PV Power

 Pack in Trichy City

| Particulars                                                      |        | Unit   |
|------------------------------------------------------------------|--------|--------|
| Capacity of solar PV system                                      | 1      | kWp    |
| Indicative cost of incorporating Solar power pack                | 2.60   | Lakh   |
| Total Residential household                                      | 261885 | Nos.   |
| Total Residential household after being accounted for in         |        |        |
| apartments                                                       | 255765 | Nos.   |
| Residential household use generators during load shedding        | 6%     |        |
| Target to introduce solar power pack in 5 years                  | 10%    |        |
| Number of solar power pack to be installed in 5 years plan       | 1535   | Nos.   |
| Total PV capacity installed                                      | 1535   | kWp    |
| Total Energy generated by PV arrays in five years                | 2.30   | MU     |
| Typical generator set used                                       | 5-10   | kW     |
| Average fuel consumption per day for 4-6 hours load shedding     | 4      | liters |
| Amount of diesel saved in five years for entire city             | 1228   | KL     |
| Cost of Diesel saved                                             | 491.07 | Lakh   |
| Indicative cost of installation                                  | 3990   | Lakh   |
| MNRE subsidy @Rs.57.00 per kWp                                   | 875    | Lakh   |
| Payback period                                                   | 6.34   | years  |
| Total Emissions reduction in five year for replacement of diesel | 3118   | Tonnes |

#### (vii) RE systems for residential Apartments/ housing complexes

The number of apartment buildings and residential complexes are becoming more ubiquitous in Trichy city owing to increase in population from nearby districts and periurban regions. The data for number of apartments in the city was unavailable some indicative renewable energy technologies that can be introduced to reduce and limit carbon emissions from residential apartments are SWH systems and Solar PV packs for back up. The scale of implementation remains directly proportional to quantum of investment available from different sources and the number of consumers.

#### (viii) Summary of RE strategy for Residential Sector

Implementation of renewable energy projects as proposed above will save 59.42MU of energy, which will reduce GHG of 38222 tonnes in five years. It is recommended that promotion of solar water heaters in residential sector should be given higher priority, as energy savings from solar water heaters are typically the highest.

| Particulars              | Potential Users | Target<br>Capacity | Units of Target | Investment<br>(Lakh) | MNRE subsidy<br>(Lakh) | Beneficiary's<br>contribution<br>(Lakh) | Amount of<br>Energy Saved<br>(MU) | Emissions<br>Reductions<br>(Tonnes) |
|--------------------------|-----------------|--------------------|-----------------|----------------------|------------------------|-----------------------------------------|-----------------------------------|-------------------------------------|
| Solar water Heaters      | 28807           | 22507              | Nos.            | 5627                 | 1485                   | 4141                                    | 35.45                             | 28714                               |
| Solar cookers            | 78565.5         | 11785              | Nos.            | 309                  | 93                     | 217                                     | 11.99                             | 2878                                |
| Solar Lantern            | 20951           | 3143               | Nos.            | 94                   | 25                     | 69                                      | 1.14                              | 287                                 |
| Solar Home System        | 20951           | 4190               | Nos.            | 670                  | 251                    | 419                                     | 6.62                              | 1673                                |
| Solar Home inverter      | 34045           | 5107               | Nos.            | 2234                 | 728                    | 1506                                    | 1.92                              | 1551                                |
| PV for replacing DG sets | 15713           | 1535               | Nos.            | 3990                 | 875                    | 3115                                    | 2.30                              | 3118                                |
| Total                    |                 |                    |                 | 12925                | 3457                   | 9468                                    | 59.42                             | 38222                               |

Table 5.27: Summary of RE Strategy for Residential sector in Trichy City

#### 5.4.2 RE Strategy for Commercial and Institutional Sector

The commercial sector consumes about 5.21% of total electricity consumed in the city. The city has 42 colleges and institutes (engineering, science and arts), 105 schools, 140 private medical service facilities and 35 hotels. Different strategies are prepared for different categories of consumers based on type and quantum of energy consumed and availability of resource and space to generate renewable energy in their premises. While preparing the strategy, only techno economically viable and commercially available renewable energy options are considered.

#### **RE Strategy for Hotels**

There aren't any big hotels in Trichy but only some 3 star hotels, budget hotels and other commercial accommodations facilities. Major energy requirement such as hot water and electricity during load shedding hours could be met by solar energy. Solar thermal system can be used to generate hot water or steam for cooking. Solar PV power plant can be used to reduce or eliminate use of diesel generators which are being used during load shedding hours. Since a clear budget based classification couldn't be obtained, the basic measures of SWH and SPV systems are suggested as indicative measures for hotels in the city.

Introduction of RE system in 50% of the hotels in Trichy city as described in the table below will save 0.84 MU of energy per year and reduce GHG emission by 714.38 tonnes. Introduction of solar water heater system should be given prime importance in the hotels.

|                          |                            | RE System Proposed  |                       |                                             |                   |  |  |
|--------------------------|----------------------------|---------------------|-----------------------|---------------------------------------------|-------------------|--|--|
| Particulars              | Number of<br>Establishment | Solar Wat<br>System | er Heating<br>1 (LPD) | Heating<br>JPD) Solar PV<br>System<br>(kWp) |                   |  |  |
|                          |                            | Unit<br>Capacity    | Total<br>Capacity     | Unit<br>Capacity                            | Total<br>Capacity |  |  |
| Budget hotels            | 35                         |                     | 105000                |                                             | 70                |  |  |
| Target in 5 years        |                            | 50%                 | 52500                 | 50%                                         | 35                |  |  |
| Energy Savings<br>(MU)   |                            |                     | 0.79                  |                                             | 0.05              |  |  |
| Total Emission reduction |                            |                     | 669.38                |                                             | 45                |  |  |

Table 5.28: Strategies for hotels

#### **Renewable Energy Systems for Restaurants**

Trichy has a handful of restaurants and small eateries. The exact number of such establishments was not available. However, indicative renewable energy technologies that find immense carbon reduction potential in restaurants are solar water heaters which can easily be introduced to meet their hot water demand for cooking and utensil cleaning. Typically almost all restaurants use DG sets as standby power supply source during load shedding, PV power plant will be an attractive and profitable option for the restaurants. For smaller establishments like street food stalls and smaller eateries across the city, solar lanterns prove to be a profitable and attractive option in comparison to the typically used kerosene lamps.

#### **Renewable Energy Systems for Hospitals**

The Trichy city has 140 private health care facilities, 17 Corporation maintained dispensaries, 5 urban health posts and 4 maternity homes. Since a segregation based on number of beds could not be found, a general summary is being illustrated without case examples to offer an insight on the potential implementation of renewable energy systems for the health sector in Trichy city. Targeting a 50% target to introduce renewable energy systems in hospitals in the city, total energy savings of 7.28 MU and emissions reduction of 6190 tonnes of  $CO_2$  can be achieved.

| Particulars              | Number of     | -                                   | Proposed          |                  |                   |
|--------------------------|---------------|-------------------------------------|-------------------|------------------|-------------------|
|                          | Establishment | Solar Water Heating<br>System (LPD) |                   | Solar PV<br>(kV  | / System<br>Vp)   |
| Hospitals                |               | Unit<br>Capacity                    | Total<br>Capacity | Unit<br>Capacity | Total<br>Capacity |
| Urban health posts       | 5             | 2000                                | 10000             | 10               | 50                |
| Corporation Dispensaries | 17            | 5000                                | 85000             | 10               | 170               |
| Private Hospitals (incl  | 144           | 10000                               | 1440000           | 10               | 1440              |

 Table 5.29: Summary of RE systems for Hospitals

| maternity homes)         |     |     |         |     |      |
|--------------------------|-----|-----|---------|-----|------|
| Aggregate                | 161 |     | 1525000 |     | 1610 |
| Target in 5 years        |     | 50% | 762500  | 50% | 805  |
| Energy Savings (MU)      |     |     | 11.44   |     | 1.21 |
| Total Emission reduction |     |     | 9722    |     | 1026 |

**Renewable Energy Systems for Educational Institutes** 

Educational institutes are major establishments in the commercial sector of a city. Although they are not major source of energy consumption in the city yet they account for a substantial degree of energy utilization. An informal survey revealed the following figures of educational institutes in Trichy. The city has approximately 104 schools of which 31 are elementary schools, 27 are middle and 1 higher secondary schools. There are a total of 42 colleges including arts, science and engineering. The institutes having hostels can use solar water heater to supply hot water to the bath rooms and the kitchen thereby providing bathing comfort to the students and hot water for cooking.

The two renewable energy options can effectuate a considerable energy saving in educational institutes are the solar water heaters and solar PV systems. The potential for energy savings in different educational institutes in Trichy is tabulated below. The figures give a gross idea about the financial implications and emission reductions rendered by installation of the aforementioned renewable energy systems.

| Particulars                                              | Number of     | RE System Proposed                                                                                                                              |                   |                                                                                                                                                     |                   |                  |                   |                  |                   |
|----------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-------------------|------------------|-------------------|
|                                                          | Establishment | Solar Cooker/<br>Steam generating<br>system for<br>Cooking (sqm<br>collector area)<br>collector area)<br>Solar Water<br>Heating System<br>(LPD) |                   | Solar Cooker/<br>Steam generating<br>system for<br>system for<br>Cooking (sqm<br>collector area)<br>Solar Water<br>Heating System<br>(LPD)<br>(LPD) |                   | (kWp)            | Biogas System     | (Cu M)           |                   |
| Educational<br>Institutes                                |               | Unit<br>Capacity                                                                                                                                | Total<br>Capacity | Unit<br>Capacity                                                                                                                                    | Total<br>Capacity | Unit<br>Capacity | Total<br>Capacity | Unit<br>Capacity | Total<br>Capacity |
| Elementary<br>school/ (incl<br>special needs<br>schools) | 32            | 20                                                                                                                                              | 640               | 0                                                                                                                                                   | 0                 | 1                | 32                | 0                | 0                 |
| Middle Schools                                           | 27            | 0                                                                                                                                               | 0                 | 0                                                                                                                                                   | 0                 | 2                | 54                | 0                | 0                 |
| High and<br>Higher<br>Secondary<br>Schools               | 4             | 0                                                                                                                                               | 0                 | 0                                                                                                                                                   | 0                 | 2                | 8                 | 0                | 0                 |
| Colleges (Arts,<br>Science,<br>Engineering)              | 42            | 200                                                                                                                                             | 8400              | 10000                                                                                                                                               | 420000            | 10               | 420               | 20               | 840               |
| Aggregate                                                | 105           |                                                                                                                                                 | 9040              |                                                                                                                                                     | 420000            |                  | 514               |                  | 840               |
| Target in 5<br>years                                     |               | 25%                                                                                                                                             | 2260              | 25%                                                                                                                                                 | 105000            | 25<br>%          | 129               | 25%              | 210               |
| Energy Savings<br>(MU)                                   |               |                                                                                                                                                 | 1.47              |                                                                                                                                                     | 1.58              |                  | 0.19              |                  | 0.45              |

 Table 5.30: Summary of RE strategy for educational institutes

| Total Emission |  | 1249 | 1339 | 164 | 379 |
|----------------|--|------|------|-----|-----|
| reduction      |  |      |      |     |     |

#### Summary of RE strategy for Commercial and Institutional Sector

The suggested implementations as described above are able to achieve about 0.14% reduction in total energy savings through the RE strategies for commercial and institutional sector. The strategy, once implemented fully will save 17.17 MU of energy per year and reduce 14592.35 tonnes of GHG emissions per year. The primary focus should be given to introduction of solar water heaters for hotels, restaurants, hospitals and other residential institutes, which will save 13.80 MU per year. Solar PV power plant should be introduced for diesel abatement in the establishments that are using diesel sets as standby power supply source. The restaurants and hotels that has considerable amount of food and organic waste, should introduce biogas system. Use of solar cooker for preparing mid-day meal in primary schools will be an attractive option to save LPG for cooking and creation of awareness and demonstration about use of renewable energy devices among school children.

| Table 5.31: Summary fo | r RE Strategy for | Commercial and | 1 Institutional |
|------------------------|-------------------|----------------|-----------------|
| Sector                 |                   |                |                 |

| RE Strategy for<br>Commercial and<br>Institutional sector | Units | Target<br>Capacity | Total<br>Investment<br>(Lakh INR) | MNRE<br>subsidy<br>(Lakh INR) | Sate/ NMC/<br>Beneficiary's<br>contribution | Amount of<br>Energy<br>Saved (MU) | Emissions<br>Reductions<br>(Tonnes) |
|-----------------------------------------------------------|-------|--------------------|-----------------------------------|-------------------------------|---------------------------------------------|-----------------------------------|-------------------------------------|
| Solar Steam Cooker                                        | sqm   | 2260               | 339.00                            | 122.04                        | 216.96                                      | 1.47                              | 1248.65                             |
| Schools, Hostels,                                         |       |                    |                                   |                               |                                             |                                   |                                     |
| Hotels, Restaurant                                        |       |                    |                                   |                               |                                             |                                   |                                     |
| Solar Water Heaters                                       | LPD   | 920000             | 1840.00                           | 607.20                        | 1232.80                                     | 13.80                             | 11730.00                            |
| for Hotels,                                               |       |                    |                                   |                               |                                             |                                   |                                     |
| Restaurants,                                              |       |                    |                                   |                               |                                             |                                   |                                     |
| Hospitals                                                 |       |                    |                                   |                               |                                             |                                   |                                     |
| Solar PV Power                                            | kWp   | 969                | 1694.88                           | 552.05                        | 1142.83                                     | 1.45                              | 1234.84                             |
| Plant for Hotels,                                         |       |                    |                                   |                               |                                             |                                   |                                     |
| Restaurants,                                              |       |                    |                                   |                               |                                             |                                   |                                     |
| Hospitals.                                                |       |                    |                                   |                               |                                             |                                   |                                     |
| Biogas for Hotels                                         | CuM   | 210                | 31.50                             | 22.05                         | 9.45                                        | 0.45                              | 378.86                              |
| and Restaurants                                           |       |                    |                                   |                               |                                             |                                   |                                     |
| Total                                                     |       |                    | 3905.38                           | 1303.34                       | 2602.04                                     | 17.17                             | 14592.35                            |

#### 5.4.3 RE Strategy for Industrial Sector

The industry sector in Trichy consumes 23.73% of total electricity. In Trichy City there are about 20 small and medium scale industries. The system capacity assumed is average capacity and will vary based on the size of the industry and energy requirement. The data for specific industries in Trichy was unavailable due to their insignificant overall number. However the typical measures based on the scale of industrial establishment-are described below to facilitate implementations in the industrial sector in Trichy city.

| Industry Scale | Indicative Industry type             | Typical measures                    |
|----------------|--------------------------------------|-------------------------------------|
| Small scale    | Food based cottage industry, Textile | Solar Water Heating, Solar Lanterns |
|                | and dyeing units                     | etc.                                |
| Medium scale   | Textile plants, Paper and food       | Solar Water Heating, Solar PV       |
|                | processing industry, Metal casting   | systems, Solar Cooking/Steaming     |
|                | units                                | systems etc.                        |
| Large scale    | Cement plants, Machinery and         | Solar Water Heating systems, Solar  |
|                | beverage industry                    | PV systems, Biomass systems etc.    |

Table 5.32: Indicative measures for Industrial sector

#### 5.4.4 RE Strategy for Municipal Sector

The municipal sector of Trichy city consumes 7.8% of total electrical energy in the city. The primary consumers in this sector are street lights, outdoor lights in parks, markets, office buildings of the Corporation, advertising hoardings, water supply, sewerage treatment plant etc. Renewable energy devices are suggested to all categories of consumers depending upon the energy demand. The sector has ample opportunity to save energy through introducing renewable energy and energy conservation measures and could show case these initiatives to encourage people to adopt further.

### (i) Renewable Energy System for Municipality building and other Office Buildings

The official municipal corporation buildings consume in total about 2.46 MU of electricity per year. The loads consume most of the energy are air conditioners, fans and lighting loads. A 10kWp PV Power plant is recommended for some Corporation buildings to supply power during load shedding hours.

#### (ii) Renewable Energy System for Markets

There are 11 daily markets in Trichy. Typically electricity is used to power the electrical equipments like bulb, tube lights, fans etc. Taking the note of load shedding for 3-4 hours per day in the city and the increasing of fuel costs for use in generators, some suggestions for RE technologies for the commercial shops are provided, which if implemented will result in substantial reduction in conventional energy and the resultant emissions.

| Particulars                                                   | Nos | Nos RE System Proposed              |                   |                  |                   |                           |  |
|---------------------------------------------------------------|-----|-------------------------------------|-------------------|------------------|-------------------|---------------------------|--|
|                                                               |     | Solar Water Heating<br>System (LPD) |                   | Solar PV<br>(kV  | Y System<br>Vp)   | Biogas<br>System<br>(CuM) |  |
|                                                               |     | Unit<br>Capacity                    | Total<br>Capacity | Unit<br>Capacity | Total<br>Capacity | Total<br>Capacity         |  |
| Municipal office<br>buildings                                 | 24  | 0                                   | 0                 | 10               | 240               | 0                         |  |
| Parks, recreation centres<br>maintained by the<br>corporation | 7   | 0                                   | 0                 | 10               | 70                | 0                         |  |
| other buildings/sites like staff quarters etc                 | 138 | 0                                   | 0                 | 5                | 690               | 0                         |  |

 Table 5.33: Summary of RE Strategy for Municipal sector

| Particulars              | Nos | RE System Proposed                  |                         |                 |                         |                         |  |
|--------------------------|-----|-------------------------------------|-------------------------|-----------------|-------------------------|-------------------------|--|
|                          |     | Solar Water Heating<br>System (LPD) |                         | Solar PV<br>(kV | Biogas<br>System        |                         |  |
|                          |     |                                     |                         |                 | [                       | (CuM)                   |  |
|                          |     | Unit<br>ıpacity                     | <b>Fotal</b><br>Ipacity | Unit<br>Ipacity | <b>Fotal</b><br>Ipacity | <b>Fotal</b><br>Ipacity |  |
|                          |     | Ũ                                   | Ľ Ü                     | Ű               | Ľ Ű                     | C.                      |  |
| Bus Stands and shelters  | 134 | 0                                   | 0                       | 5               | 670                     | 0                       |  |
| Kaliyanamandapam         | 8   | 5000                                | 40000                   | 5               | 40                      | 160                     |  |
| Daily Market             | 11  | 0                                   | 0                       | 5               | 55                      | 110                     |  |
| Reading Rooms            | 24  | 0                                   | 0                       | 1               | 24                      | 0                       |  |
| Aggregate                | 629 |                                     | 40000                   |                 | 2451                    | 270                     |  |
| Target in 5 years        |     | 20%                                 | 8000                    | 20%             | 490                     | 27                      |  |
| Energy Savings (MU)      |     |                                     | 0.12                    |                 | 0.74                    | 0.06                    |  |
| Total Emission reduction |     |                                     | 102                     |                 | 625                     | 49                      |  |

#### 5.4.5 EE Strategy for Residential sector

Residential sector consumes largest amount of electricity among all sectors. Important proven and cost effective measures for the sector are described in this section. Based on the survey, it was found that incandescent lights are still being used in the residential sector. Utilizing the survey data the savings due to replacement of incandescent lamps with CFL are calculated and are presented in the table below.

#### (i) Replace Incandescent Lamps with Fluorescent

Incandescent bulbs are the major and the most common source of high energy consumption in the residential area. Replacement of incandescent lamps has acquired a substantial precedence in all the energy efficiency strategies as the most feasible option. The techno commercial for replacement of incandescent bulbs with CFL is given below. An assumption of 42% households utilizing CFLs has been considered as target group for replacements and 100% replacement is assumed for the calculations below.

| Particulars                                              |          | Unit   |
|----------------------------------------------------------|----------|--------|
| Total Residential household                              | 261885   | Nos.   |
| Household using incandescent bulb                        | 42%      |        |
| Target to replace incandescent bulb with CFL             | 100%     |        |
| Number of incandescent bulb to be replaced per household | 4        | Nos.   |
| Total number of incandescent bulb to be replaced         | 439967   | Nos.   |
| Indicative cost of installation                          | 660      | Lakh   |
| Energy saved by replacing 60W bulb with 15W CFL          | 43358728 | kWh    |
| Cost of electricity savings                              | 1518     | Lakh   |
| Payback period                                           | 0.43     | years  |
| Emission reduction per year                              | 35121    | Tonnes |

Table 5.34: Replacement of incandescent lamps with fluorescent

#### (ii) T5 tube light + Electronic Ballast to replace T12/T8 tube light+ Magnetic Ballast

A conventional tube light (with magnetic ballast consuming 15W) consumes around 55 watts. It can be replaced with T5 tube (28W) with electronic ballast (4W) which will

require around 32W. The calculations have been done for a period of 5 years assuming 80 % replacement of T 12 /T8 tube lights can be possible in 83% of the households using T12/T8 tube lights.

#### Table 5.35: T5 tube light + Electronic Ballast to replace T12/T8 tube light+ Magnetic Ballast

| Particulars                                                  |          | Unit   |
|--------------------------------------------------------------|----------|--------|
| Total Residential household                                  | 261885   | Nos.   |
| Household using T8/T12 tube lights                           | 94%      |        |
| Target to replace T8/T12 by T5 tube lights                   | 80%      |        |
| Number of T8/T12 to be replaced per household                | 2        | Nos.   |
| Total number of T8/T12 tube lights to be replaced            | 393875   | Nos.   |
| Indicative cost of installation                              | 1969     | Lakh   |
| Energy saved by replacing T8/T12(with magnetic ballast) with |          |        |
| T5 (with electronic ballast)                                 | 13226324 | kWh    |
| Cost of electricity savings                                  | 463      | Lakh   |
| Payback period                                               | 4.25     | Years  |
| Emission reduction per year                                  | 10713    | Tonnes |

#### (iii) Efficient ceiling fans to replace conventional ceiling fans

Replacing conventional fans with star rated fans can save substantial amount of electrical energy and money. The financial and technical analysis for replacement of conventional ceiling fans in residential sector of Trichy city assumes that 50% replacement should be possible in almost 91% of the households.

Table 5.36: Efficient Ceiling Fans to Replace Conventional Ceiling Fans

| Particulars                                             |          | Unit   |
|---------------------------------------------------------|----------|--------|
| Total Residential household                             | 261885   | Nos.   |
| Household using Conventional Fans                       | 91%      |        |
| Target to replace CF by EE Fans                         | 50%      |        |
| Number of Conventional fan to be replaced per household | 3        | Nos.   |
| Total number of Conventional Fans to be replaced        | 357473   | Nos.   |
| Indicative cost of installation                         | 5362     | Lakh   |
| Energy saved by replacing Conventional Fans by EE Fans  | 19303543 | kWh    |
| Cost of electricity savings                             | 676      | Lakh   |
| Payback period                                          | 8        | years  |
| Emission reduction per year                             | 15636    | Tonnes |

#### (iv) Replacement of conventional air-conditioners with EE star rated ACs

In Trichy city it is assumed that approximately 14% of residential households had 1.5 ton air conditioners on average. The energy consumption by a 1.5 ton unit is approximately 7.2 kWh per day. For calculating the energy savings by switching to more energy efficient air conditioners it is assumed that 14% households in Trichy owns an air –conditioner and 10% air conditioners can be assumed as potential target for replacement with energy efficient ACs.

## Table 5.37: Replacement of conventional air-conditioners with EE star rated ACs

| Particulars                                             |         | Unit   |
|---------------------------------------------------------|---------|--------|
| Total Residential household                             | 261885  | Nos.   |
| Household using Conventional AC                         | 14%     |        |
| Target to replace Conventional ACs by EE star rated AC  | 50%     |        |
| Number of Conventional ACs to be replaced per household | 1       | Nos.   |
| Total number of Conventional ACs to be replaced         | 18332   | Nos.   |
| Indicative cost of installation                         | 5040    | Lakh   |
| Energy saved by replacing Conventional ACs by EE Star   |         |        |
| Rated ACs                                               | 7424440 | kWh    |
| Cost of electricity savings                             | 260     | Lakh   |
| Payback period                                          | 19      | years  |
| Emission reduction per year                             | 6014    | Tonnes |

#### (v) Replacement of conventional refrigerators with EE star rated refrigerators

One of the most common appliance used in homes are the refrigerators. With increasing affordability refrigerators have become an indispensable item in most Indian households. They come in the capacity range of 200-400 liters. These days many BEE star rated energy efficient refrigerators are available in the Indian market. A conventional refrigerator of 200 watts has been taken to provide the calculations below. An assumption of 59% households with conventional refrigerators is taken to show the energy savings.

### Table 5.38: Replacement of Conventional Refrigerators with EE Star RatedRefrigerators

| Particulars                                                       |          | Unit   |
|-------------------------------------------------------------------|----------|--------|
| Total Residential household                                       | 261885   | Nos.   |
| Household using Conventional Refrigerators                        | 59%      |        |
| Target to replace Conventional Refrigerators by EE Star Rated     |          |        |
| Refrigerators                                                     | 50%      |        |
| Number of Conventional Refrigerators to be replaced per household | 1        | Nos.   |
| Total number of Conventional Refrigerators to be replaced         | 77256    | Nos.   |
| Indicative cost of installation                                   | 8691     | Lakh   |
| Energy saved by replacing Conventional Refrigerators by EE Star   |          |        |
| Rated Refrigerators                                               | 36619380 | kWh    |
| Cost of electricity savings                                       | 1282     | Lakh   |
| Payback period                                                    | 6.8      | years  |
| Emission reduction per year                                       | 29662    | Tonnes |

#### (vi) Replacement of conventional water pumps with EE star rated water pumps

Survey in Trichy has shown that residential households use water pumps of 1.5 HP capacities which have an approximate electrical consumption of 2.2 kWh. Assuming 45% households in Trichy use water pumps, 50% replacement of conventional pumps by energy efficient pumps have been targeted for energy savings.

### Table 5.39: Replacement of conventional water pumps with EE star rated water pumps

| Particulars                                                          |         | Unit |
|----------------------------------------------------------------------|---------|------|
| Total Residential household                                          | 261885  | Nos. |
| Household using Water Pumps                                          | 45%     |      |
| Target to replace Conventional Water Pump by EE Pump                 | 50%     |      |
| Number of Conventional Pumps to be replaced per household            | 1       | Nos. |
| Total number of Conventional Pumps to be replaced                    | 82494   | Nos. |
| Indicative cost of installation                                      | 1649.87 | Lakh |
| Energy saved by replacing Conventional Water Pumps by EE Water Pumps | 9033068 | kWh  |

| Cost of electricity savings | 316.16 | Lakh   |
|-----------------------------|--------|--------|
| Payback period              | 5.22   | years  |
| Emission reduction per year | 7317   | Tonnes |

#### (vii) Summary of EE Strategy in Residential Sector

The estimated potential of energy savings in the residential sector through energy efficiency measures is 129 MU per year in Trichy City. The reduction of emission through EE measures in residential sector is 104462 tonnes per year. Replacement of incandescent bulbs with CFL, conventional fans, refrigerators and air conditioners with star rated one have the most potential scope for energy savings.

| EE Measures in residential sector                                                               | Unit | Target<br>Capacity | Investment<br>(Lacs INR) | Amount of<br>Energy<br>Saved (MU) | Emissions<br>Reductions<br>(Tonnes) |
|-------------------------------------------------------------------------------------------------|------|--------------------|--------------------------|-----------------------------------|-------------------------------------|
| Indicative cost of<br>replacing 60 watt<br>incandescent with 15<br>watt CFL                     | Nos. | 439967             | 660                      | 43                                | 35121                               |
| Indicative cost of<br>replacing T12/T8 with<br>T5 FTL                                           | Nos. | 393875             | 1969                     | 13                                | 10713                               |
| Indicative cost of<br>replacing conventional<br>Fans with EE star rated<br>fans                 | Nos. | 357473             | 5362                     | 19                                | 15636                               |
| Indicative cost of<br>replacing conventional<br>AC with EE star rated<br>AC                     | Nos. | 18332              | 5040                     | 7                                 | 6014                                |
| Indicative cost of<br>replacing conventional<br>refrigerator with EE star<br>rated refrigerator | Nos. | 77256              | 8691                     | 37                                | 29662                               |
| Indicative cost of<br>installing a EE water<br>pump                                             | Nos. | 82494              | 1650                     | 9                                 | 7317                                |
|                                                                                                 |      |                    | 23372                    | 129                               | 104462                              |

 Table 5.40: Summary of EE Strategy in Residential Sector

#### 5.4.6 EE Strategy for Commercial Sector

#### (i) Replace Incandescent Lamps with Fluorescent

CFL usage has been widespread in the last few years and it is high time that all commercial establishments should voluntarily replace the high energy consuming incandescent lamps with CFLs. It is assumed that 16% of the commercial sector establishments use incandescent bulbs and 100% of establishment use T8/T12 tube lights. A target to replace 80% of the incandescent bulbs and the same amount of T8/T12 tube lights in the commercial sector is assumed so as to give the calculations below.

#### Table 5.41: Replacement of incandescent lamps with fluorescent

| Particulars                                             |         | Unit   |
|---------------------------------------------------------|---------|--------|
| Total Commercial Consumers                              | 74538   | Nos.   |
| Consumers using incandescent bulb                       | 16%     |        |
| Target to replace incandescent bulb with CFL            | 80%     |        |
| Number of incandescent bulb to be replaced per consumer | 10      | Nos.   |
| Total number of incandescent bulb to be replaced        | 95409   | Nos.   |
| Indicative cost of installation                         | 143     | Lakh   |
| Energy saved by replacing 60W bulb with 15W CFL         | 7728100 | kWh    |
| Cost of electricity savings                             | 386     | Lakh   |
| Payback period                                          | 0.37    | years  |
| Emission reduction per year                             | 6260    | Tonnes |

#### Table 5.42: Replace T12/T8 tube light by T5 tube light

| Particulars                                                  |         | Unit   |
|--------------------------------------------------------------|---------|--------|
| Total Commercial Consumers                                   | 74538   | Nos.   |
| Consumers using T8/T12 tube lights                           | 100%    |        |
| Target to replace T8/T12 by T5 tube lights                   | 80%     |        |
| Number of T8/T12 to be replaced per consumer                 | 2       | Nos.   |
| Total number of T8/T12 tube lights to be replaced            | 119261  | Nos.   |
| Indicative cost of installation                              | 596     | Lakh   |
| Energy saved by replacing T8/T12(with magnetic ballast) with |         |        |
| T5 (with electronic ballast)                                 | 3291598 | kWh    |
| Cost of electricity savings                                  | 165     | Lakh   |
| Payback period                                               | 3.62    | years  |
| Emission reduction per year                                  | 2666    | Tonnes |

#### (ii) Replacement of inefficient fans

Analysis of the sample survey of Trichy city reveals that maximum commercial establishments in Trichy city have fans. Conventional fans have an average energy consumption of 1.03kWh per day. Assuming 15% of the conventional fans in the commercial sector of Trichy can be replaced with more energy efficient fans the following techno-commercials have been calculated.

#### **Table 5.43: Replacement of Conventional Fans**

| Particulars                                            |         | Unit   |
|--------------------------------------------------------|---------|--------|
| Total Commercial Consumers                             | 74538   | Nos.   |
| Consumers using Conventional Fans                      | 99%     |        |
| Target to replace CF by EE Fans                        | 15%     |        |
| Number of Conventional fan to be replaced per consumer | 3       | Nos.   |
| Total number of Conventional Fans to be replaced       | 29886   | Nos.   |
| Indicative cost of installation                        | 448     | Lakh   |
| Energy saved by replacing Conventional Fans by EE Fans | 1046010 | kWh    |
| Cost of electricity savings                            | 52      | Lakh   |
| Payback period                                         | 8.57    | years  |
| Emission reduction per year                            | 847     | Tonnes |

#### (iii) Replacement of conventional air-conditioners with EE star rated ACs

Commercial establishments are usually equipped with air conditioners. In Trichy city like in most other southern cities 1.5 tons air conditioners are more popular in the commercial buildings. Assuming that 33% of the commercial establishments own an air conditioner, 10% target replacement of inefficient air-conditioners with more efficient conditioners are taken into consideration for the below mentioned calculations.

| natou nos                                                   |         |        |
|-------------------------------------------------------------|---------|--------|
| Particulars                                                 |         | Unit   |
| Total Commercial Consumers                                  | 74538   | Nos.   |
| Consumers using Conventional ACs                            | 33%     |        |
| Target to replace Conventional ACs by EE star rated ACs     | 10%     |        |
| Number of Conventional ACs to be replaced per household     | 5       | Nos.   |
| Total number of Conventional ACs to be replaced             | 12411   | Nos.   |
| Indicative cost of installation                             | 3412    | Lakh   |
| Energy saved by replacing Conventional ACs by EE Star Rated |         |        |
| ACs                                                         | 5026284 | kWh    |
| Cost of electricity savings                                 | 251     | Lakh   |
| Payback period                                              | 13.58   | years  |
| Emission reduction per vear                                 | 4071    | Tonnes |

Table 5.44: Replacement of Conventional Air-Conditioners with EE Star Rated ACs

#### (iv) Replacement of conventional refrigerators with EE star rated refrigerators

Refrigerators in commercial sector are restricted to the food outlets, restaurants, hotels, guest houses, and ice-cream parlors. General trend reveals that the refrigerators of the range of 200-400 W are found in the commercial sector of Trichy city like most Indian cities. Approximately 41% of the consumers own a refrigerator and a target of replacing 25% refrigerators has been taken to show the energy saving potential of replacing conventional refrigerators in commercial sector of Trichy city.

Table 5.45: Replacement of Conventional Refrigerators with EE Star RatedRefrigerators

| Particulars                                                     |         | Unit   |
|-----------------------------------------------------------------|---------|--------|
| Total Commercial Consumers                                      | 74538   | Nos.   |
| Consumers using Conventional Refrigerators                      | 41%     |        |
| Target to replace Conventional Refrigerators by EE Star Rated   |         |        |
| Refrigerators                                                   | 25%     |        |
| Number of Conventional Refrigerators to be replaced per         |         |        |
| consumer                                                        | 1       | Nos.   |
| Total number of Conventional Refrigerators to be replaced       | 7640    | Nos.   |
| Indicative cost of installation                                 | 860     | Lakh   |
| Energy saved by replacing Conventional Refrigerators by EE Star |         |        |
| Rated Refrigerators                                             | 3621429 | kWh    |
| Cost of electricity savings                                     | 181     | Lakh   |
| Payback period                                                  | 5       | years  |
| Emission reduction per year                                     | 2933    | Tonnes |

#### (v) Replacement of conventional water pumps with EE star rated water pumps

About 30% of the commercial units use water pumps. If a target of 25% is made in order to replace the inefficient water pumps with efficient star rated water pumping equipments then the following techno-commercial details ensue which are calculated below.

# Table 5.46: Replacement of conventional water pumps with EE star rated water pumps

| Particulars                                               |        | Unit   |
|-----------------------------------------------------------|--------|--------|
| Total Residential household                               | 74538  | Nos.   |
| Household using Water Pumps                               | 30%    |        |
| Target to replace Conventional Water Pump by EE Pump      | 25%    |        |
| Number of Conventional Pumps to be replaced per household | 1      | Nos.   |
| Total number of Conventional Pumps to be replaced         | 7826   | Nos.   |
| Indicative cost of installation                           | 157    | Lakh   |
| Energy saved by replacing Conventional Water Pumps by EE  |        |        |
| Water Pumps                                               | 704384 | kWh    |
| Cost of electricity savings                               | 25     | Lakh   |
| Payback period                                            | 6.35   | years  |
| Emission reduction per year                               | 571    | Tonnes |

#### (vi) Summary of EE Strategy in Commercial & Institutional Sector

The estimated energy savings potential from commercial and institutional sector through energy efficiency measures is 21.41MU per year. Potential for GHG reduction is 17348 tonnes per year.

|                                  | TT •4 |         | T / /      | <b>TI</b> ( • • • ( | <b>T</b> • • |
|----------------------------------|-------|---------|------------|---------------------|--------------|
| EE Measures                      | Units | Targets | Investment | Electricity         | Emissions    |
|                                  |       |         | (INR)      | Saved (MU)          | Saved        |
|                                  |       |         |            |                     | (Tonnes)     |
| Indicative cost of replacing 100 |       |         |            |                     |              |
| watt incandescent with 15 watt   |       |         |            |                     |              |
| CFL                              | Nos.  | 95409   | 143        | 7.728               | 6260         |
| Indicative cost of replacing     |       |         |            |                     |              |
| T8/T12 tube lights with T5 FTL   | Nos.  | 119261  | 596        | 3.292               | 2666         |
| Indicative cost of replacing     |       |         |            |                     |              |
| conventional fans with EE fans   | Nos.  | 29886   | 448        | 1.046               | 847          |
| Indicative cost of replacing     |       |         |            |                     |              |
| conventional AC with EE star     |       |         |            |                     |              |
| rated AC                         | Nos.  | 12411   | 3412       | 5.026               | 4071         |
| Indicative cost of replacing     |       |         |            |                     |              |
| conventional refrigerators with  |       |         |            |                     |              |
| EE star rated refrigerators      | Nos.  | 7640    | 860        | 3.621               | 2933         |
| Indicative cost of installing EE |       |         |            |                     |              |
| water pumps                      | Nos.  | 7826    | 157        | 0.704               | 571          |
|                                  |       |         | 5616       | 21.418              | 17348        |

#### Table 5.47: Summary of EE Strategy in Commercial & Institutional Sector

#### 5.4.7 EE Strategy for Industrial Sector

Trichy has around 20 industrial units as per the Corporation assessments. They are also contributing a lot towards the huge energy consumption in Trichy city. Energy efficiency measures are the most financially feasible option in this sector too.

#### (i) Replacement of incandescent with CFLs

Industrial sector survey in Trichy city reveals that almost 35% use incandescent bulbs as lighting appliances. 80% target for replacing incandescent bulbs with CFLs is taken to provide the energy savings calculations below.

| Table 5.48: Replacement of incandescent with CFLs in Industrial sector |    |      |  |
|------------------------------------------------------------------------|----|------|--|
| Particulars                                                            |    | Unit |  |
| Total Industrial Consumers                                             | 20 | Nos. |  |
| Consumers using incandescent bulb                       | 35%   |        |
|---------------------------------------------------------|-------|--------|
| Target to replace incandescent bulb with CFL            | 80%   |        |
| Number of incandescent bulb to be replaced per consumer | 25    | Nos.   |
| Total number of incandescent bulb to be replaced        | 140   | Nos.   |
| Indicative cost of installation                         | 0     | Lakh   |
| Energy saved by replacing 100W bulb with 20W CFL        | 30240 | kWh    |
| Cost of electricity savings                             | 2     | lakh   |
| Payback period                                          | 0.19  | years  |
| Emission reduction per year                             | 24    | Tonnes |

#### (ii) Replacement of T8/T12 by T5 tube lights

The T12 and Tt8 tube lights are also frequently used in the industrial sector in Trichy city. Survey results show that almost 90% consumers use these appliances. The energy saving potential by replacement of T12 and T8 with more efficient T5 tube lights is calculated below assuming a replacement of 90% appliances in target households. The financial and technical details of the replacement in Trichy city industrial units are given below.

#### Table 5.49: Replacement of T8/T12 tube lights by T5 tube lights

| Particulars                                                  |       | Unit   |
|--------------------------------------------------------------|-------|--------|
| Total Industrial Consumers                                   | 20    | Nos.   |
| Consumers using T8/T12 tube lights                           | 90%   |        |
| Target to replace T8/T12 by T5 tube lights                   | 90%   |        |
| Number of T8/T12 to be replaced per consumer                 | 40    | Nos.   |
| Total number of T8/T12 tube lights to be replaced            | 648   | Nos.   |
| Indicative cost of installation                              | 3     | Lakh   |
| Energy saved by replacing T8/T12(with magnetic ballast) with |       |        |
| T5 (with electronic ballast)                                 | 22848 | kWh    |
| Cost of electricity savings                                  | 1     | Lakh   |
| Payback period                                               | 2.84  | years  |
| Emission reduction per year                                  | 19    | Tonnes |

#### (iii) Replacement of Conventional Fans by EE Star Rated Fans

Conventional fans are other energy guzzlers in industrial units of most cities. They are used for longer hours in this sector hence the replacement of conventional energy efficient fans with more efficient ones would bring about a lot of energy savings. 74% of industrial units have installed a conventional fan which can be targeted for replacement. Assuming a replacement of 25% of the conventional fans with energy efficient fans the economics and technical details of replacement are tabulated below.

| Table 5.50: Replacement of conventional fan | ns by EE star rated fans |
|---------------------------------------------|--------------------------|
|---------------------------------------------|--------------------------|

| Particulars                                            |      | Unit   |
|--------------------------------------------------------|------|--------|
| Total Commercial Consumers                             | 20   | Nos.   |
| Consumers using Conventional Fans                      | 74%  |        |
| Target to replace CF by EE Fans                        | 25%  |        |
| Number of Conventional fan to be replaced per consumer | 15   | Nos.   |
| Total number of Conventional Fans to be replaced       | 55   | Nos.   |
| Indicative cost of installation                        | 1    | Lakh   |
| Energy saved by replacing Conventional Fans by EE Fans | 2620 | kWh    |
| Cost of electricity savings                            | 0    | Lakh   |
| Payback period                                         | 6    | years  |
| Emission reduction per year                            | 2    | Tonnes |

#### (iv) Replacement of Conventional ACs with EE Star Rated ACs

Almost 13 % of the surveyed industrial units in Trichy City had the ownership of air conditioning units in their office premises. Assuming the replacement of 25% of the air-conditioning units with star rated air conditioning units the figures related to instalments and energy savings are given below.

| able 5.51. Replacement of conventional ACS with EE Star Rateu ACS |       |       |  |  |  |  |
|-------------------------------------------------------------------|-------|-------|--|--|--|--|
| Particulars                                                       |       | Unit  |  |  |  |  |
| Total Industrial Consumers                                        | 20    | Nos.  |  |  |  |  |
| Consumers using Conventional ACs                                  | 13%   |       |  |  |  |  |
| Target to replace Conventional ACs by EE star rated ACs           | 25%   |       |  |  |  |  |
| Number of Conventional ACs to be replaced per household           | 5     | Nos.  |  |  |  |  |
| Total number of Conventional ACs to be replaced                   | 3     | Nos.  |  |  |  |  |
| Indicative cost of installation                                   | 1     | Lakh  |  |  |  |  |
| Energy saved by replacing Conventional ACs by EE Star Rated       |       |       |  |  |  |  |
| ACs                                                               | 1316  | kWh   |  |  |  |  |
| Cost of electricity savings                                       | 0.066 | Lakh  |  |  |  |  |
| Payback period                                                    | 14    | years |  |  |  |  |
| Emission reduction per year                                       | 1     | Tonne |  |  |  |  |

Table 5.51: Replacement of Conventional ACs with EE Star Rated ACs

#### (v) Summary of EE Strategy in Industrial Sector

Energy Efficiency measures with mere replacement of incandescent bulbs, inefficient fans, ac and refrigerators in industrial sector of Trichy city can save at least 0.06MU energy per year reducing GHG emission by 46 tonnes per year.

| Table | 5.52: | Summarv | of EE | Strategy | for | Industrial | Sector |
|-------|-------|---------|-------|----------|-----|------------|--------|
| IUNIC | 0.04. | Summury |       | Strucesy | 101 | maastin    |        |

| EE Measures                                                                  | Units | Target | Investment<br>(INR) | Electricity<br>Saved<br>(MU) | Emissions<br>Saved<br>(Tonnes) |
|------------------------------------------------------------------------------|-------|--------|---------------------|------------------------------|--------------------------------|
| Indicative cost of replacing 100<br>watt incandescent with 15 watt<br>CFL    | Nos.  | 140    | 0                   | 0.03                         | 24                             |
| Indicative cost of replacing<br>T12/T8 tube lights with T5 tube<br>lights    | Nos.  | 648    | 3                   | 0.02                         | 19                             |
| Indicative cost of replacing<br>conventional fans with EE star<br>rated fans | Nos.  | 55     | 1                   | 0.00                         | 2                              |
| Indicative cost of replacing<br>conventional AC with EE star<br>rated AC     | Nos.  | 3      | 1                   | 0.00                         | 1                              |
|                                                                              | Nos.  |        | 5                   | 0.06                         | 46                             |

#### 5.4.8 EE Strategy for Municipal Sector

#### **Street Lighting**

Street lighting is one of the major sources of energy consumption in municipal area. In Trichy city, 40 W tube lights, 150 watt and 250 watt HPSV are mostly used as streetlights in different wards of within the jurisdiction of the Corporation.

#### (i) Replacement of 150 watt HPSV with 100 watt induction lamps

150 watts high pressure sodium vapor lamps are frequently used in street lighting fixture in municipal area. They can be replaced with more energy efficient induction laps available in the Indian market today. A 100% target to replace 3414 number of 150W HPSV lamps with 100 watt induction lamps is taken for Trichy city, to provide the technoeconomics of implementing the replacement and bringing about energy savings.

| - usio oloof - lop-uoonionio or - oo - uuto o                         |       | eren rampo |
|-----------------------------------------------------------------------|-------|------------|
| Particulars                                                           |       | Unit       |
| Total number of 150 watt HPSV                                         | 29    | Nos.       |
| Target to replace 150 watt HPSV with 100 watt induction lamp          | 100%  |            |
| Total number of 100 watt induction lamp needed                        | 29    | Nos.       |
| Indicative cost of installation                                       | 6     | Lakh       |
| Energy saved by replacing 150 & 125 HPSV with 100 watt induction lamp | 6351  | kWh        |
| Cost of electricity savings                                           | 31755 | INR        |
| Payback period                                                        | 19.2  | years      |
| Emission reduction per year                                           | 5     | Tonnes     |

#### Table 5.53: Replacement of 150 watt HPSV with 100 watt induction lamps

#### (ii) Replacement of 40 watt tube lights with 25 W LED lamps

There are 12231 number of 40 watts tube lights currently under use within different wards of the Trichy Corporation area. A replacement target of 100% is proposed with 25 W LED lamps to improve the efficiency of the street lighting systems. Following table indicates the techno-economic analysis and energy saving such a replacement accompanies.

| Table 5.54: Re | placement of 40 | ) watt tube 1 | lights with | 25 watt LEI | D lamps |
|----------------|-----------------|---------------|-------------|-------------|---------|
|                |                 |               |             |             |         |

| Particulars                                          |         | Unit   |
|------------------------------------------------------|---------|--------|
| Total number of 40 W tube lights                     | 27968   | Nos.   |
| Target to replace 40 W tube lights by 25 W LED lamps | 100%    |        |
| Total number of 25 watt LED lamp needed              | 27968   | Nos.   |
| Indicative cost of installation                      | 5924    | Lakh   |
| Energy saved                                         | 6124992 | kWh    |
| Cost of electricity savings                          | 306     | Lakh   |
| Payback period                                       | 19.35   | years  |
| Emission reduction per year                          | 1102.50 | Tonnes |

#### (iii) Sensors for automatic on/off of street lights

Automatic street lights ensure that energy is not wasted by lights turned on during day time. Many streetlights in India face this predicament due to faulty manually controlled street lights. Manual control involves labour costs, energy wastes and poor efficiency; hence Municipal street lights should hasten the process of installing automatic sensors. Solar sensors are the new and upcoming products in the market today and should be applied by municipalities for higher efficiency in the operation and maintenance of municipal street lights. The following scheme of power saver application has been recommended for street lights in Trichy city that aren't undergoing any replacement as suggested in the previous sections:

# Table 5.55: Application of 20KVA power saver packs HPSV, MHL and CFL lighting systems

| Particulars                                        | HPSV                     |         |           | MHL       | CFL        |           |             |          |
|----------------------------------------------------|--------------------------|---------|-----------|-----------|------------|-----------|-------------|----------|
|                                                    | 400 W (High mast<br>SVL) | 500W    | M 02      | 150 W     | 2*II W     | MS9       | 4*25 W      | 1*35 W   |
| Total no of street lights                          | 46                       | 2       | 38        | 4         | 171        | 15        | 22          | 230      |
| Wattage (kW)                                       | 400                      | 500     | 70        | 250       | 72         | 36        | 96          | 120      |
| Load (KW)                                          | 18.4                     | 1       | 2.66      | 1         | 12.312     | 0.54      | 2.112       | 27.6     |
| Electricity<br>Consumption (kWh)                   | 73876                    | 4015    | 10679.9   | 4015      | 49432.68   | 2168.1    | 8479.68     | 110814   |
| No of 25 KVA power<br>Saver Required               | 0.92                     | 0.05    | 0.133     | 0.05      | 0.6156     | 0.027     | 0.1056      | 1.38     |
| Cost of each 20 KVA<br>power saver is INR<br>85000 | 78200                    | 4250    | 11305     | 4250      | 52326      | 2295      | 8976        | 117300   |
| Energy Saved                                       | 22162.8                  | 1204.5  | 3203.97   | 1204.5    | 14829.804  | 650.43    | 2543.904    | 33244.2  |
| Cost of Energy Saved<br>(INR)                      | 77569.8                  | 4215.75 | 11213.895 | 4215.75   | 51904.314  | 2276.505  | 8903.664    | 116354.7 |
| Payback Period                                     | 1.01                     | 1.01    | 1.01      | 1.0081243 | 1.0081243  | 1.0081243 | 1.008124296 | 1.008124 |
| Emissions Saved (in tonnes)                        | 17.95                    | 0.98    | 2.60      | 0.975645  | 12.0121412 | 0.5268483 | 2.06056224  | 26.9278  |

#### (iv) Water Pumping

Water pumping is one of the major utility practices which consume high energy. The energy efficiency initiatives for water pumping in India have been going on for quite some time. BEE state in its Manual for Development of Municipal Energy Efficiency Projects states that 25% energy savings can be obtained from initiatives in water systems alone. In Karnataka Municipal energy efficiency Improvement initiatives, water pumping has been addressed. This has been further taken up as a Municipal Energy efficiency CDM project. The effort can be replicated throughput other municipalities sin India. This would bring about a lot of energy savings in water pumping utilities.

#### Proper pump-system design (efficient Pump, pumps heads with system heads)

Proper water pumping design can bring about lots of energy savings in the running and maintenance cost of water pump systems. Careful designing is required to assess the volume of water to be pumped and the height it needs to be raised to. Fluid piping software can be utilized for designing water pumps in Municipal bodies. A 20% saving is assumed for design based energy efficiency of water pumping systems. The techno-economics given below for this initiative is based on this assumption.

Table 5.56: Proper pump-system design (efficient Pump, pumps heads with system heads)

| Standard/Recommended Condition     | Value   |
|------------------------------------|---------|
| Annual Energy Consumption in MU    | 13.11   |
| Annual Energy Cost in Rs. (lacs)   | 458.85  |
| Saving %                           | 20%     |
| Total Annual Saving in MU          | 2.622   |
| Annual Saving in Rs. (lacs)        | 91.77   |
| eCO <sub>2</sub> (Tonne) Reduction | 2123.82 |

#### Installation of variable speed drivers

Dimension and adjustment losses are two of the major energy loss sources in pumping processes. Adjusting pump speed or using Variable Speed Driver to adjust speed is one way to decreasing both the aforementioned losses in pumping processes. An assumption of 5% savings is taken to provide the financial and technical details of installing variable speed drivers in municipal water pumping systems in Trichy City.

| Standard/Recommended Condition   | Value   |
|----------------------------------|---------|
| Annual Energy Consumption in MU  | 13.11   |
| Annual Energy Cost in Rs. (lacs) | 458.85  |
| Saving %                         | 5%      |
| Total Annual Saving in MU        | 0.6555  |
| Annual Saving in Rs. (lacs)      | 22.9425 |
| eCO2 (Tonne) Reduction           | 530.955 |

#### **Table 5.57: Variable Speed Drivers**

#### Power saver installation in pump house

An assumption of 15% savings is taken as the energy saving potential for installing power saver in municipal pump houses. The following techno-economics is based on this assumption.

| Table 5.56. Fower saver instantion in pump house |          |  |  |  |
|--------------------------------------------------|----------|--|--|--|
| Standard/Recommended Condition                   | Value    |  |  |  |
| Annual Energy Consumption in MU                  | 13.11    |  |  |  |
| Annual Energy Cost in Rs. (lacs)                 | 458.85   |  |  |  |
| Saving %                                         | 15%      |  |  |  |
| Total Annual Saving in MU                        | 1.9665   |  |  |  |
| Annual Saving in Rs. (lacs)                      | 68.8275  |  |  |  |
| eCO <sub>2</sub> (Tonne) Reduction               | 1592.865 |  |  |  |

### Table 5.58: Power saver installation in pump house

#### (v) Sewage Treatment Plant (STP)

Pumping systems are utilized in water treatment plants of the municipal corporations whose energy efficiency can also be determined through efficient system design. A considerable amount of energy can be saved taking suitable measures in STP. TMC should initiate energy audit in all its utility services and installations to take a stalk of the energy consumption and potential savings.

#### Proper pump-system design (efficient pump, pumps heads with system heads)

The same principle of speed adjustment to reduce adjustment and dimension energy losses in water pumping process applies in water treatment plants. An assumption of 5% saving is taken into consideration for giving the techno-economics of installing variable

### Table 5.59: Proper pump-system design (efficient pump, pumps heads with system heads)

| Standard/Recommended Condition   | Value |
|----------------------------------|-------|
| Annual Energy Consumption in MU  | 2.46  |
| Annual Energy Cost in Rs. (lacs) | 86.1  |
| Saving %                         | 20%   |
| Total Annual Saving in MU        | 0.492 |
| Annual Saving in Rs. (lacs)      | 350   |

| eCO <sub>2</sub> (Tonne) Reduction | 399 |
|------------------------------------|-----|

#### Installation of variable speed drivers

Installation of variable speed drivers for municipal pumps could save at least 5% energy resulting total savings of 0.20MU per year reducing 165 tonnes of GHG emission.

| Tuble 0.00. Vallable Speed Differs |       |
|------------------------------------|-------|
| Standard/Recommended Condition     | Value |
| Annual Energy Consumption in MU    | 2.46  |
| Annual Energy Cost in Rs. (lakhs)  | 86.1  |
| Saving %                           | 5%    |
| Total Annual Saving in MU          | 0.12  |
| Annual Saving in Rs. (lakhs)       | 4.31  |
| eCO <sub>2</sub> (Tonne) Reduction | 100   |

#### Table 5 60. Variable Speed Drivers

#### Power saver installation in pump house

An assumption of 15% savings has been taken to calculate the energy saving potential and financial implications of installing power saver in pump houses.

| Table 5.61: Power saver installation in pump house |       |  |  |  |  |
|----------------------------------------------------|-------|--|--|--|--|
| Standard/Recommended Condition                     | Value |  |  |  |  |
| Annual Energy Consumption in MU                    | 2.46  |  |  |  |  |
| Annual Energy Cost in Rs. (lakhs)                  | 86.1  |  |  |  |  |
| Saving %                                           | 15%   |  |  |  |  |
| Total Annual Saving in MU                          | 0.369 |  |  |  |  |
| Annual Saving in Rs. (lakhs)                       | 12.92 |  |  |  |  |
| eCO2 (Tonne) Reduction                             | 299   |  |  |  |  |

#### **M 11 E 61 D** installation in

#### Summary of EE Strategy for Municipal Sector

The energy savings potential through energy efficiency measures in municipal sector is 12.44MU per year causing emissions to reduce to about 6216.35 tonnes.

| EE Measures                                                                                                                    | Investment<br>(Lakh) | Electricity<br>Saved (MU) | Emissions<br>Saved<br>(Tonnes) |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|--------------------------------|
| Indicative cost of replacing 150 watt<br>HPSV with 100 watt induction lamps                                                    | 6                    | 0.01                      | 5                              |
| Indicative cost of replacing 40W tube lights with 25 W LED lamps                                                               | 5924                 | 6.12                      | 1102                           |
| Proper pump system design,<br>installation of variable speed drivers<br>and power savers in existing water<br>supply facility  |                      | 5.24                      | 4247.64                        |
| Proper pump system design,<br>installation of variable speed drivers<br>and power savers in existing sewage<br>system facility |                      | 0.98                      | 797                            |
| Use of power saver in street lighting                                                                                          | 3                    | 0.08                      | 64                             |
|                                                                                                                                |                      | 12.44                     | 6216.35                        |

#### Table 5.62: Summary of EE Strategy for municipal sector

#### 5.4.9 Solid Waste Management Interventions

#### Waste to Energy Potential in Trichy

Estimated solid waste generated in Trichy city is over 400 MT/day. Potential energy recovery from MSW through different treatment methods could be estimated from its calorific value and organic fraction etc. Since relevant details are not available for Trichy, widely used estimates for municipal solid waste in India have been used for a preliminary assessment. However, waste to energy potential for the city is considered as an indicative assessment and not included in the strategy to achieve energy savings goal under solar city programme.

#### (i) Waste to Energy Potential through thermo-chemical conversion

In thermo-chemical conversion all of the organic matter, biodegradable as well as nonbiodegradable, contributes to the energy output. Total electrical energy generation potential is estimated to be 12.56 MWe and savings per year with 70% PLF is estimated as 77 MU.

| Particulars                                      |         | Unit    |
|--------------------------------------------------|---------|---------|
| Total waste generated                            | 432     | Tonnes  |
| Net Calorific Value (conservative estimate)      | 2400    | kcal/kg |
| Energy recovery potential (NCV x W x 1000/860)   | 1205581 | kWh     |
| Power generation potential                       | 50233   | kW      |
| Conversion efficiency                            | 25%     |         |
| Net Power generation potential                   | 12.56   | MWe     |
| Plant Load Factor                                | 70%     |         |
| Net electrical energy savings potential @70% PLF | 77.01   | MU      |
| Emission reduction per year                      | 62375   | Tonnes  |
| Total Investment                                 | 8791    | Lakh    |
| MNRE subsidy @ 50% subject to maximum of         | 3767    | Lakh    |
| Rs.300.00 per MW                                 |         |         |
| State/City/Private Power Producer                | 5023    | Lakh    |
| Cost savings                                     | 3465    | Lakh    |
| Payback period                                   | 1.45    | Years   |

Table 5.63: Waste to Energy through thermo-chemical conversion

#### (ii) Waste to Energy Potential through bio-methanation

In bio-chemical conversion, only the biodegradable fraction of the organic matter can contribute to the energy output. It is estimated that a 4.52 MWe electrical energy generation is possible from this process which could save about 27.72 MU of energy every year assuming a 70% of PLF.

| Particulars                                      |           | Unit     |  |  |  |  |  |  |  |
|--------------------------------------------------|-----------|----------|--|--|--|--|--|--|--|
| Total waste generated                            | 432       | Tonnes   |  |  |  |  |  |  |  |
| Total biodegradable volatile solid (VS)          | 30%       |          |  |  |  |  |  |  |  |
| Typical digestor efficiency                      | 60%       |          |  |  |  |  |  |  |  |
| Typical bio-gas yield (m3 / kg. of VS destroyed) | 0.80      | CuM/kg   |  |  |  |  |  |  |  |
| Biogas yield                                     | 62208     | CuM      |  |  |  |  |  |  |  |
| Calorific Value of bio-gas                       | 5000.00   | kcal/CuM |  |  |  |  |  |  |  |
| Energy recovery potential                        | 361674.42 | kWh      |  |  |  |  |  |  |  |

Table 5.64: Waste to Energy through bio-methanation

| Particulars                             |       | Unit   |
|-----------------------------------------|-------|--------|
| Power generation potential              | 15070 | kW     |
| Conversion efficiency                   | 30%   |        |
| Net Power generation potential          | 4.52  | MWe    |
| Plant Load Factor                       | 70%   |        |
| Net electrical energy savings potential | 27.72 | MU     |
| Emission reduction per year             | 22455 | Tonnes |
| Total Investment                        | 2713  | Lakh   |
| MNRE subsidy @ R.200.00 lakh per MW     | 904   | Lakh   |
| State/City/Private Power Producer       | 1808  | Lakh   |
| Cost savings                            | 1248  | Lakh   |
| Payback period                          | 1.45  | Years  |

#### (iii) Waste to Energy Potential from Sewage Treatment Plant

Liquid waste generated in Trichy city is 88.64 MLD per day. It is estimated that a 3.09 MWe electrical energy generation is possible from Sewage Treatment Plant which could save about 18.96 MU of energy every year assuming a 70% of PLF.

 Table 5.65: Liquid Waste to Energy Potential from Sewage Treatment Plant

 (STP)

| Particulars                                 |           | Unit      |
|---------------------------------------------|-----------|-----------|
| Total waste water generated                 | 88.64     | MLD       |
| Total biodegradable organic/ Volatile Solid | 88.64     | Tonnes/da |
| available for Biomethanation                |           | У         |
| Typical Digestion Efficiency                | 60%       |           |
| Typical Biogas yield                        | 0.8       | cum / kg  |
| Biogas yield                                | 42547.2   | cum       |
| Electricity (kWh)                           | 247367.44 | kWh       |
| Capacity of the plant                       | 10306.98  | KW        |
| Conversion Efficiency                       | 30%       |           |
| Total Electricity Generated                 | 3.09      | MWe       |
| Plant Load Factor                           | 70%       |           |
| Net electrical energy savings potential     | 18.96     | MU        |
| Emission reduction per year                 | 15358     | Tonnes    |
| Total Investment                            | 1855.26   | Lakh      |
| MNRE subsidy @40% subject to maximum of     | 618.42    | Lakh      |
| Rs.200.00 lakh per MW                       |           |           |
| State/City/Private Power Producer           | 1236.84   | Lakh      |
| Cost savings                                | 853.23    | Lakh      |
| Payback period                              | 1.45      | Years     |

### 6. Tirunelveli City

#### 6.1 City Profile

Historically associated with Lord Shiva, Nellai as it is also called Tirunelveli is one of the oldest cities in India. Located in the penultimate districts of Tamil Nadu, Tirunelveli has been regarded as the microcosm of the state due the rich variety of physical and geographical features it presents like the lofty mountains and low plains, rivers and cascades, seacoast and thick inland forest, sandy soils and fertile alluvium, a variety of flora, fauna, and protected wild life. Situated on the western banks of the Perennial River Thamirabarani and fed by it, the city is famous for its paddy fields also called *Nell* in Tamil from which the city earns its name.

Ruled over by many dynasties until it was annexed by the British in 1801, the district was reorganized after the Indian independence on  $20^{\text{th}}$  October 1986. The city of Tirunelveli has been one of the oldest serving Lok Sabha constituencies composed of 6 assembly sections electing representatives directly to the country's lower house.

#### 6.1.1 Details of Location, Geography and Climate of Tirunelveli

#### Location

Located at the southern end of the Deccan plateau and in the penultimate district of the state of Tamil Nadu, Tirunelveli lies 47 m above sea-level and is situated at 8.7  $^{\circ}$  N lat and 77  $^{\circ}$  E long. The city lies amidst important towns like Tuticorin, Palayamkottai, and Gangaikondan etc. The district itself is surrounded by Virudhunagar district on the North, Western Ghats on the West, Kanniyakumari district on the south, Tuticorin district on the East.



Figure 6.1: Location of Tirunelveli

#### Geography

Tirunelveli is located on the southernmost tip of the Deccan plateau. The River Thamirabarani cuts across the city and causes heavy alluvial soil deposition making the land in the city rich and conducive for intensive rice farming activity. Spread over an area of 108.65 square km., the city has a number of water bodies likes Nainar Lake and Udayarpetti Lake and several ponds.

#### Climate

Tirunelveli city experiences hot and humid climate for most time of the year and the city has an average minimum temperature of 18  $^{\circ}$  C and an average maximum temperature of 41 $^{\circ}$  C. The city receives an annual rainfall of 95.6 mm. The city receives most rainfall during the autumn months of September and October.

| IUDIC                            | rabie 0.11. Temperatare and Raman prome |     |     |     |     |     |     |     |     |     |     |     |
|----------------------------------|-----------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| <b>Temperature Profile</b> (° C) |                                         |     |     |     |     |     |     |     |     |     |     |     |
|                                  | Jan                                     | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| Max.                             | 27                                      | 24  | 21  | 19  | 24  | 14  | 18  | 21  | 21  | 29  | 22  | 25  |
| Min.                             | 23                                      | 17  | 15  | 18  | 19  | 23  | 18  | 14  | 20  | 26  | 19  | 20  |

#### Table 6.1: Temperature and Rainfall profile

| Rainfall Profile |     |     |     |     |     |     |     |     |     |     |     |     |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| in mm            | 0   | 0   | 6   | 0   | 0   | 0   | 15  | 9   | 15  | 78  | 3   | 15  |

Source: http://www.worldweatheronline.com/Tirunelveli-weather/Tamil-Nadu/IN.aspx

#### Administrative profile

Tirunelveli city municipality was upgraded to Municipal Corporation level in 1994. The Corporation currently oversees the administration of 4 zones subdivided into a total of 55 wards. The Corporation now oversees the administration of three Municipal towns and several villages that lie within its jurisdiction. The Corporation is headed by a Mayor elected directly by the citizens of the city while its duties are executed by the Commissioner who presides over Senior Officers in charge of different departments of the Corporation like Administration, Engineering, Public Health, Accounts, Planning and Revenue. Following are brief notes on the civic services undertaken by the Corporation.

#### Water Supply

The River Thamirabarani is the only major source of water for the denizens of Tirunelveli. While the water is adequate, the supply falls short of expectation despite the extensions undertaken by the Corporation. The short-fall in supply is sharply experienced in Thatchanallur and Melapalayam administrative zones amounting to about 100 lpcd. The current consumption of water from this source stands at around 35 MLD.

#### Solid Waste Management and Sewerage

The Tirunelveli Corporation has undertaken extensions of the Underground Drainage (UGD) services. Several schemes for increasing the road length of UGD were

implemented but have had limited impact as the capacity hasn't been fully realized. The slum areas have been installed with community toilets and more such installations have been planned already. In 2007, the Corporation had maintained a SWM efficiency of 72% despite shortfalls in the necessary infrastructure and a daily garbage collection of 120 tons.

The Corporation has extended tenders in September last year for creation of 130 M.T. capacity STP at Ramayanpatti which is spread over an area of 65 acres.

#### **Street Lighting**

The Corporation undertakes the maintenance and repair of the street lights in the Local Planning Area. In 2006 and 2007, the Corporation made investments towards replacement of mercury lamps, tube lights with sodium vapor lamps costing more than INR 6 lakh. In addition, new street lights were installed and the Corporation currently maintains more than 17000 street lights.

#### **Road and Transport**

The city of Tirunelveli is ideally placed on the path of the NH7 which passes from Kashmir to Kanniyakumari. The city has a well established road network and provides easy accessibility via road to pivotal neighboring cities of Madurai and Tuticorin. The Corporation added a total length of 18km from 2005-2007.

#### **Public Health**

The Corporation maintains and runs 6 dispensaries (2 allopathic and 2 siddha), 8 maternity centers, 8 urban health posts and three government hospitals. In addition, the city has 15 private hospitals, 90 private dispensaries and 15 diagnostic centers.

#### **Infrastructure and Facilities**

Although, the nearest airport is located 22 km to the East of the city at Tuticorin; Tirunelveli is well connected via other means of transport like bus and rail. The Puthiya Perunthu Nilayam bus stand which was operationalised in 2003 serves as an all-destination center for south India. In addition, the Southern railway network maintains the Tirunelveli junction which is one of the oldest and most popular stations in southern India. The nearest port is Thoothukudi port which is 50km away.

The Corporation also maintains recreational areas and parks besides 33 schools, of which 22 are primary, six are middle and five are higher secondary. The Palayamkottai zone area is famously known as Oxford of the South owing to a large number of educational and vocational centers focused on enriching the local skills of the population.

#### **Demographic trends**

According to 2001 census, the population of Tirunelveli city was 411,831 which registered a decadal growth of 17.94%. According to 2001 census finding, the city's population was 474,838 registering a decadal growth of 21.16%. The literacy rate of Tirunelveli according

to 2011 census data was 90.86% and the sex ratio was 1023. Following tables indicate the growth rate and current demographic profile of the city.

| Table 6.2: Population profile of Tirunelveli* |            |                         |  |  |  |
|-----------------------------------------------|------------|-------------------------|--|--|--|
| Year                                          | Population | <b>Decadal Growth %</b> |  |  |  |
| 1971                                          | 241013     | -                       |  |  |  |
| 1981                                          | 291104     | 20.8                    |  |  |  |
| 1991                                          | 321454     | 10.43                   |  |  |  |
| 2001                                          | 411831     | 17.94                   |  |  |  |
| 2011                                          | 498984**   | 21.16                   |  |  |  |

| Table | 6.2: | Population  | profile | of Tiru | nelveli* |
|-------|------|-------------|---------|---------|----------|
| Table | 0.4. | I opulation | promic  | or rina |          |

\*City Master Plan Tirunelveli

\*\* Census of India 2011

#### Table 6.3: Population data\*

| Total Persons                      | 498984 |
|------------------------------------|--------|
| Males                              | 264710 |
| Females                            | 252274 |
| Sex ratio                          | 1023   |
| Total Persons below 6 years in age | 46335  |
| Males below 6 years in age         | 23677  |
| Females below 6 years in age       | 22658  |
| Sex ratio(0-6)                     | 957    |
| Total literates                    | 411281 |
| Literate Males                     | 211727 |
| Literate Females                   | 199554 |
| Male Literacy rate                 | 94.93  |
| Female Literacy rate               | 86.91  |
|                                    |        |

\*Census of India 2011

#### Socio-economic profile

In relation to the other two cities, the economy of Tirunelveli is not as prolific. Although the city has a matured workforce most concentrated in the service or tertiary sector, agriculture still remains prominent along with secondary following in at second place in terms of workforce. The city has cement factories, steel mills and cotton textile industries. There a large clout of small scale industries in and around the city within the Local Planning Area.

Owing to its opportune geographical location, the city has a large concentration of wind power multi-national companies like Suzlon, Gamesa and Vestas. The city is also a growing hub of software companies with several software firms located here. Given below are the employment stats and profile of industrial produce.

| Sector        | % of working population | % of total population |  |
|---------------|-------------------------|-----------------------|--|
| Primary       | 4.20                    | 2.21                  |  |
| Secondary     | 35.60                   | 17.98                 |  |
| Tertiary      | 60.20                   | 30.40                 |  |
| Total Workers | 100                     | 50.50                 |  |

Table 6.4: Employment statistics\*

\*City Master Plan Tirunelveli 2001 statistics

| rable 0.5. muustry prome         |                           |  |  |  |
|----------------------------------|---------------------------|--|--|--|
| Type of Industry output%         | of total industrial units |  |  |  |
| Garments and other textile based | 76.47                     |  |  |  |
| Paper and Print                  | 5.88                      |  |  |  |
| Sugar                            | 5.88                      |  |  |  |
| Roller Flour mill                | 5.88                      |  |  |  |
| Cement                           | 5.88                      |  |  |  |

#### Table 6.5: Industry profile\*

\*Tirunelveli District Collectorate

#### **Ecological and Forest Profile**

Saturated by the perennial River Thamirabarani, Tirunelveli has fertile soils that sustain its paddy rich agricultural activities all year round enabled by the good network of irrigation systems. There are red and black soils present in abundance which are basically river drawn as it flows from the heights of the Agasthiyar Periya pothigai hills which lie to the west of the city. Besides being located in the shadow region of the Western Ghats, the lower valley region of Tirunelveli is one of the most densely populated spots in southern India.

In the district, there are more than 100 rivers and their tributaries that inundate the region making it one of the most habitable and most populous.

The total area under Forest reserves and protected ranges extends to about 1220.5 square km of which 817 square km is set apart for Tiger reserve of Mundanthurai and Kalakadu. Featuring a wide variety of flora and fauna, the forests in the district represent the biodiversity of the region spread across the foothills of Western Ghats. The table below indicates the land use pattern in the city and the green cover from latest available data sources.

| Sector                     | % of total area |
|----------------------------|-----------------|
| Residential                | 11.06           |
| Commercial                 | 0.85            |
| Industrial                 | 1.99            |
| Educational                | 2.20            |
| Public and Semi Public     | 2.68            |
| Transportation             | 6.09            |
| Hills                      | 2.63            |
| Other (underdeveloped etc) | 72.5            |

#### Table 6.6: Land use pattern\*

\*Tirunelveli Master Plan 2005

According to 2005 data 36 out of 55 wards had slums totalling to 68 in total and sustaining a fourth of the population at the time.

#### Table 6.7: Green cover\*

| Parks, Gardens and Open spaces | 29 No.s         |
|--------------------------------|-----------------|
| Water bodies                   | 34.43 square km |

#### 6.2 Energy Profile

From the energy perspective, the district of Tirunelveli is crucial because of the energy plants located here. The Kudankulam Atomic Power Project that generates about 2000 MW of power is located here besides several wind projects which are 3622 in number and generate about 1600 MW. In addition, the abundance of rivers and water bodies enable Hydro Power Projects that have an installed capacity of 233 MW.

Nevertheless, the district also has some energy intensive industries like cement manufacturing plants, sugar cane industries and a large number of textile mills. The energy make-up of the district is hence rendered more or less equated in terms of energy production and consumption.

#### 6.2.1 Energy Consumption Profile of Tirunelveli

#### Introduction

This section deals with the assessment of the energy consumption patterns in Tirunelveli city. The identification of energy sources specific to each sector in Tirunelveli i.e., Residential, Commercial, Industrial and Municipal is being dealt with as follows.

#### **Total Electricity Consumption in Tirunelveli**

The main source of energy consumption in Tirunelveli is electricity, albeit the usage is substantially below average city standards owing to the lower sprawl and population of the city. The data collection was a considerable issue due to fewer data points where information could be sourced from and information pertaining to liquid fuel types has been lumped in domestic and transport sector due to absence of sector-wise segregation. Following table gives the details of the data collected.

| Sectorl                    | Electricity Consumption<br>(Million kWh) |  |
|----------------------------|------------------------------------------|--|
|                            | 2010-11                                  |  |
| Domestic                   | 133.96                                   |  |
| Commercial                 | 27.17                                    |  |
| Industrial                 | 100.52                                   |  |
| Municipal Sector           | 29.31                                    |  |
| Total Electricity consumed | 290.96                                   |  |

| Table 6.8: Sector-wise electricity consumption in Tirunely |
|------------------------------------------------------------|
|------------------------------------------------------------|

#### 6.2.2 Sector-Wise energy consumption in Community sector

#### A. Domestic Sector

Liquid fuels like Kerosene and LPG are extensively use in the domestic sector for cooking, general lighting and heating. Following tables provides the details of consumption.

#### Table 4.3.9: Fuel consumption domestic sector in Tirunelveli

| Fuel          | 2010-11 |
|---------------|---------|
| Kerosene (kL) | 17033   |
| LPG (tonnes)  | 43472.1 |

#### **B.** Commercial Sector

Information lumped under Residential sector.

#### C. Industrial Sector

Information lumped under Transport sector.

#### D. Transport Sector

Community level transport usage in Tirunelveli contributes to a considerable level of emissions of which contributions due to usage of diesel are predominant. Following table provides the details of consumption.

#### Table 6.9: Fuel consumption transport sector in Tirunelveli

| Fuel        | 2010-11   |
|-------------|-----------|
| Petrol (kL) | 40144.16  |
| Diesel (kL) | 179477.86 |

#### E. Waste

The Corporation of Tirunelveli has recently released a tender inviting interest of contractors for construction of a dumping/landfill facility. Currently, there are no waste management centres or treatment plants in the city. According to recent estimates, the city generated 39,434 MT of waste in 2010-11 at the rate of about 110 tonnes per day. Following is the data available with the Corporation provided to ICLEI.

#### Table 6.10: Waste generated in Tirunelveli

| Туре                  | 2007-08 | 2008-09 | 2009-10 | 2010-11 |
|-----------------------|---------|---------|---------|---------|
| Solid Waste (MT/year) | 24428   | 26184   | 38732   | 39434   |

#### 6.2.3 Energy Consumption in Government sector

#### A. Energy used in Street Lighting

With increasing growth rate, the Corporation has increasingly invested in infrastructure as indicated by the increase in number of street lights. In 1999, when the Corporation had maintained just over 15000 street lights, the entire maintenance and operation was privatized through bidding process and has remained privatized even since. Following are the latest details of electricity consumption by street lights in Tirunelveli.

| I UDIC O.        | able 0.11. Dheigy consumed by other bights in thundren |                   |                   |                      |                   |                      |                   |                      |
|------------------|--------------------------------------------------------|-------------------|-------------------|----------------------|-------------------|----------------------|-------------------|----------------------|
|                  | 2006-2                                                 | 2007              | 2007-2            | 2008                 | 2008-2            | 2009                 | 2009-2            | 2010                 |
|                  | Quantity<br>(MWh)                                      | Rate<br>(in lacs) | Quantity<br>(MWh) | Rate<br>(in<br>lacs) | Quantity<br>(MWh) | Rate<br>(in<br>lacs) | Quantity<br>(MWh) | Rate<br>(in<br>lacs) |
| Street<br>Lights | 9.24                                                   | 280.00            | 9.41              | 285.00               | 9.80              | 297.00               | 9.97              | 302.00               |

#### Table 6.11: Energy consumed by Street Lights in Tirunelveli

| Table | 6.12: | Eaui | oments | used | for | street | lighting |  |
|-------|-------|------|--------|------|-----|--------|----------|--|
|       |       |      |        |      |     |        |          |  |

| Equipment                          | Number |
|------------------------------------|--------|
| 40 watts tube lights               | 12231  |
| 70 watts SV lamps                  | 833    |
| 250 watts SV lamps                 | 2824   |
| 250 watts MHL fittings             | 71     |
| 400 watts MHL fittings             | 418    |
| 150 watts SV lamps                 | 3414   |
| 250 watts CF lamps                 | 616    |
| High mast (400 watts SVL fittings) | 23     |

#### B. Energy used on Water Supply and Sewerage pumping

Water supply from the perennial River Thamirabarani is the main source of water for Tirunelveli city residents and industries. The water is conveyed through pumping stations which fill overhead tanks and are then used by the citizens. Although there is enough water, the current level of infrastructure does not allow satiation of the growing demand for water in the city. Following are the details describing the electricity expended on water supply to the city and sewerage pumping from the city.

## Table 6.13: Energy used in Water Supply and Sewerage pumping in Tirunelveli

| Particulars            | 2006-2007        | 2007-2008        | 2008-2009        | 2009-2010        |
|------------------------|------------------|------------------|------------------|------------------|
|                        | Quantity<br>(MU) | Quantity<br>(MU) | Quantity<br>(MU) | Quantity<br>(MU) |
| Water supply           | 12.100           | 12.22            | 12.27            | 12.32            |
| Sewerage Pump stations | 3.9              | 3.97             | 4.02             | 4.07             |
| (Source: ICLEI 2012)   |                  |                  |                  |                  |

(Source: ICLEI 2012)

#### C. Energy used in Corporation buildings and facilities

Corporation of Tirunelveli administers its responsibility from its headquarters located at Swami Nellaiapper High Road. The main use of electricity in the building and facilities is for power the lighting and air conditioning equipment and various other office equipments. Besides these uses, the Corporation powers public places like parks and precincts, government schools and hospitals etc. The following table indicates the electricity usage for these activities and the related rates of usage.

| Particulars         | 2006-2007 | 2007-2008 | 2008-2009 | 2009-2010 |
|---------------------|-----------|-----------|-----------|-----------|
|                     | Quantity  | Quantity  | Quantity  | Quantity  |
|                     | (MU)      | (MU)      | (MU)      | (MU)      |
| Bldg and Facilities | 2.17      | 2.52      | 2.87      | 2.95      |
|                     |           |           |           |           |

| Table 6.14: Energy used in Co | rporation buildings and facilities |
|-------------------------------|------------------------------------|
|-------------------------------|------------------------------------|

(Source: ICLEI 2012)

#### **D.** Energy used in Corporation Transport

Corporation maintains vehicles in order to execute its duties like field visits, repair and maintenance etc. Tirunelveli Corporation has 4 cars that run on petrol and 56 other vehicles including 8 cars, 7 light-duty vehicles and 41 heavy-duty vehicles that run on diesel. There are an additional 21 vehicles like Lorries, container vehicles, tractors etc that assist the Corporation public health workers in waste management services around the city. Following table lists the estimates of fuel costs.

#### Table 6.15: Corporation vehicle characteristics

| Tuble 0.1 | able 0.10. corporation venicle characteristics |                   |             |             |             |  |
|-----------|------------------------------------------------|-------------------|-------------|-------------|-------------|--|
|           | No. of                                         | 2006-2007         | 2007-2008   | 2008-2009   | 2009-2010   |  |
|           | vehicles                                       | Rate (Rs in lacs) | Rate (Rs in | Rate (Rs in | Rate (Rs in |  |
|           | venicies                                       |                   | lacs)       | lacs)       | lacs)       |  |
| Petrol    | 4                                              | 3.74              | 3.85        | 4.12        | 4.58        |  |
| Diesel    | 77                                             | 125.13            | 147.23      | 194.32      | 115.42      |  |
| (C 1(     |                                                |                   |             |             |             |  |

(Source: ICLEI 2012)

Based on the rate of fuel in 2010, the amount of fuel used in kilo Liters can be found. This calculation is indicated in the following table.

Table 6.16: Fuel usage by Corporation vehicles

| Fuel type | Total cost (Rs in<br>Lacs) | Cost of fuel per liter<br>(Rs/Liter) | Fuel Usage (kL) |
|-----------|----------------------------|--------------------------------------|-----------------|
| Petrol    | 4.58                       | 51.59                                | 8.8             |
| Diesel    | 115.42                     | 37.78                                | 305.5           |

\*

### 6.3 GHG Emissions Inventory of Tirunelveli

Based on this inventory, the total emissions from the city for the year 2009-2010 were 794147.37 tonnes of carbon dioxide equivalents ( $CO_2e$ ). In instances where data is unavailable from the same year, comparative analysis between sectors may not possible. However, from the data presented here it can be clearly seen that the amount of emissions

from municipal activities was much lower indicating carbon efficiency of the Corporation activities.

#### **Community level GHG emissions**

The total emissions from the Community sector in Tirunelveli is 794147.37 tCO<sub>2</sub>e

| Sector                          | Equiv. CO <sub>2</sub> tonnes |
|---------------------------------|-------------------------------|
| Residential                     | 174089                        |
| Commercial                      | 20.70                         |
| Industrial                      | 76.71                         |
| Transport                       | 602027                        |
| Waste                           | 17933.08                      |
| Total Community level Emissions | 794147.37                     |

### Table 6.17: Community level Carbon Emissions (tCO2e)

#### Residential

The residential sector GHG emissions were 174089 tonnes with LPG fuel type contributing the most to the overall value. The details of residential emissions are given below. Please note that this includes fuel usage (LPG and Kerosene) from commercial sector as well.

|                      | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|----------------------|-------------------------------|--------------------------|
| Electricity          | 102.24                        | 0.06                     |
| LPG                  | 129,942.00                    | 74.64                    |
| Kerosene             | 44,045.61                     | 25.30                    |
| Subtotal Residential | 174,089.84                    | 100.00                   |

#### Table 6.18: Residential Greenhouse Gas Emissions (2010-11)

#### Commercial

Due to unavailability of fuel data based on sector-wise usage data collection and inventory has been altered in order that the amount of LPG and Kerosene used in the city is lumped under the Residential sector. Hence, emission source types besides Electricity are not included in this sector for the sake of clarity in calculations:

#### Table 6.19: Commercial Greenhouse Gas Emissions (2010-11)

|                     | Equiv. CO <sub>2</sub> tonnes |
|---------------------|-------------------------------|
| Electricity         | 20.70                         |
| Subtotal Commercial | 20.70                         |

#### Industrial

Due to unavailability of fuel data based on sector-wise usage data collection and inventory has been altered in order that the amount of Petrol and Diesel used in the city is lumped under the Transport sector. Hence, emission source types besides Electricity are not included in this sector for the sake of clarity in calculations:

|                     | Equiv. CO <sub>2</sub> tonnes |  |  |  |  |
|---------------------|-------------------------------|--|--|--|--|
| Electricity         | 76.71                         |  |  |  |  |
| Subtotal Industrial | 76.71                         |  |  |  |  |

#### Table 6.20: Industrial Greenhouse Gas Emissions (2010-11)

#### Transport

The transportation sector GHG emission was 602027 tonnes. Following table lists the emissions attributed to this sector. Please note that this includes fuel usage (Petrol and Diesel) from industrial sector as well.

#### Table 6.21: Transport Greenhouse Gas Emissions (2010-11)

|                    | Equiv. CO <sub>2</sub> tonnes |
|--------------------|-------------------------------|
| Diesel             | 99556.65                      |
| Petrol             | 502470.39                     |
| Subtotal Transport | 602027.04                     |

#### Waste

Tirunelveli Corporation has a proposal for installation of a disposal center as part of its waste management activities. The Corporation has extended tenders in September last year for creation of 130 M.T. capacities STP at Ramayanpatti which is spread over an area of 65 acres. (More to be added) The following emissions calculation is based on the latest data obtained from the Corporation.

#### Table 6.22: Waste Greenhouse Gas Emissions (2010-11)

|                       | (====)                        |                          |
|-----------------------|-------------------------------|--------------------------|
|                       | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
| Municipal Solid Waste | 1,126.69                      | 100                      |
| Subtotal Waste        | 1,126.69                      | 100                      |

#### **Government Level GHG emissions**

The total emissions arising from Corporation activities are about 900 tonnes of  $CO_2$  with a large part on account of fossil fuel use in Corporation owned transport. Following table gives details of the activities and their related emission calculations for the latest data that could be availed from the authorities.

| Table | 6.23: | Government | level | Carbon | Emissions | (tCO <sub>2</sub> e) |
|-------|-------|------------|-------|--------|-----------|----------------------|
|       | 0.201 |            |       |        |           | (00020)              |

| Sector                 | Equiv. CO <sub>2</sub> tonnes | % of total<br>emissions |
|------------------------|-------------------------------|-------------------------|
| Facilities             | 20.12                         | 2.24                    |
| Buildings              | 2.25                          | 0.25                    |
| Transport              | 877.11                        | 97.51                   |
| Total Government level |                               |                         |
| Emissions              | 899.47                        | 100                     |

#### Facilities

Facilities like illumination of public precincts through street lights and traffic lights are some of the service that the Corporation is responsible and that generates greenhouse gasses. Water supply and sewerage pumping are other activities that cause emissions. Following table details the activities and the emissions arising from each.

|                        | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|------------------------|-------------------------------|--------------------------|
| Street lighting        | 7.61                          | 37.82                    |
| Water supply           | 9.40                          | 46.74                    |
| Sewerage pump stations | 3.11                          | 15.44                    |
| Subtotal Facilities    | 20.12                         | 100.00                   |

#### Buildings

Corporation buildings and the equipments therein also become a source of GHG emissions when powered through electricity. The following table details the relevant emissions from this activity.

| Table 6.25: Buildings | Greenhouse Ga | s Emissions | (2009-10) |
|-----------------------|---------------|-------------|-----------|
|                       |               |             |           |

|                    | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|--------------------|-------------------------------|--------------------------|
| Illumination       | 2.25                          | 100                      |
| Subtotal Buildings | 2.25                          | 100                      |

#### Transport

In Tirunelveli, the emissions due to Corporation owned transport are mostly due to diesel than petrol. Details of this are provided in the table below.

| •                  | Equiv. CO <sub>2</sub> tonnes | Equiv. CO <sub>2</sub> % |
|--------------------|-------------------------------|--------------------------|
| Petrol             | 21.82                         | 2.49                     |
| Diesel             | 855.28                        | 97.51                    |
| Subtotal Transport | 877.11                        | 100.00                   |

#### Table 6.26: Transport Greenhouse Gas Emissions (2008-09)

#### 6.4 Suggested Low Carbon action plans

#### 6.4.1 Renewable Energy Resource Assessment

A preliminary assessment has been done for solar, wind and biomass resources and energy recovery potential from municipal solid waste and sewage treatment plant. While biomass data is for entire Tirunelveli district, there is no hydro potential in the city.

#### 6.4.2 Solar Radiation

Tirunelveli (Latitude 8.43 N, Longitude 77.42 E) receives good amount of solar radiation owing to its southern location in the Indian peninsula.

| Awii/M / Day |      |      |      |      |      |      |      |      |      |      |      |      |
|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Source       | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
| NASA SSE     | 4.84 | 5.58 | 6.14 | 5.51 | 5.31 | 4.46 | 4.53 | 4.87 | 5.13 | 4.42 | 3.97 | 4.43 |
| Satellite    |      |      |      |      |      |      |      |      |      |      |      |      |
| MNRE Solar   | 5.52 | 6.14 | 6.24 | 5.59 | 5.57 | 4.82 | 4.70 | 5.07 | 5.04 | 4.02 | 3.71 | 4.60 |
| Resource     |      |      |      |      |      |      |      |      |      |      |      |      |

Table 6.27: Monthly Averaged Insolation Incident on a Horizontal Surface  $(kWh/M^2/Day)$ 



Figure 6.2: Annual Solar Radiation profile in Tirunelveli

#### 6.4.3 Wind Energy

Wind energy data for Tirunelveli is presented in the table below. Generally, average TMCual wind speeds of at least 4.0-4.5 m/s are needed for a wind turbine to produce enough electricity to be cost-effective. From the wind data available, there seems to be enough potential for wind energy in Tirunelveli. Detailed Study is required for assessment of energy generation potential from wind resource

| Site Name     | Lati | itude Longitu |     | itude | Elevation | Mean annual                          | WPD at      | WPD at          |
|---------------|------|---------------|-----|-------|-----------|--------------------------------------|-------------|-----------------|
|               | Deg  | Min           | Deg | Min   | in meters | wind speed at<br>20m/25m in<br>m/sec | 20m/<br>25m | 50m in<br>W/sqm |
| Panakudi      | 8    | 19            | 77  | 33    | 20        | 6.36                                 | 366         | 469             |
| Mangalapuram  | 9    | 3             | 77  | 22    | 20        | 6.19                                 | 312         | 423             |
| Achankuttam   | 8    | 57            | 77  | 29    | 20        | 5.17                                 | 270         | 397             |
| Kalunir Kulam | 8    | 55            | 77  | 27    | 50        | 6.60                                 | 390         | 390             |
| Sankaneri     | 8    | 12            | 77  | 40    | 25        | 6.28                                 | 258         | 388             |
| Kumarapuram   | 8    | 16            | 77  | 34    | 25        | 6.11                                 | 288         | 385             |
| Kannankulam   | 8    | 9             | 77  | 35    | 25        | 5.92                                 | 238         | 375             |
| Gangaikondan  | 8    | 51            | 77  | 46    | 25        | 5.11                                 | 246         | 338             |
| Ovari         | 8    | 17            | 77  | 52    | 20        | 5.08                                 | 160         | 221             |

Table 6.28: Designated wind sites near Tirunelveli city

Source: www.windpowerindia.com/

#### 6.4.4 Biomass Resource

Biomass resource for Tirunelveli city is not available separately. However, the data is available at district level and presented in the table. Major agricultural products of the district are Paddy, Maize, Coconut and Urad grains. Though the potential of power generation for biomass is estimated to be 74.6 MWe for the entire district, apparently there is no potential of power generation from biomass within the Tirunelveli city.

| District    | Area<br>(kHa) | Crop<br>Production        | Biomass<br>Generation | Biomass<br>Surplus | Power<br>Potential | Biomass Class      |  |  |
|-------------|---------------|---------------------------|-----------------------|--------------------|--------------------|--------------------|--|--|
| Tirunelveli | 100.2         | ( <b>K1/11</b> )<br>734.6 | 1095.3                | 426.5              | 55.1               | Agro               |  |  |
| Tirunelveli | 162.8         | NA                        | 211.2                 | 139.4              | 19.5               | Forest & wasteland |  |  |

| Table | 6.29: | <b>Biomass</b> | Resource |
|-------|-------|----------------|----------|
|-------|-------|----------------|----------|

#### 6.4.5 Small Hydro Power

As per MNRE, there are 14 sites for small hydro power projects up to 25 MW already commissioned and more than 100 under proposal for future development within Tamil Nadu state. The table gives the details of two major sites.

| Table | 6.30: | Small | Hvdro  | Power | Pro | iects |
|-------|-------|-------|--------|-------|-----|-------|
| Table | 0.00. | oman  | IIyuiu | TOWCI | 110 | Julia |

| Name of Project | River    | Capacity (kW) |
|-----------------|----------|---------------|
| Servalar SHP    | Servalar | 20000         |
| Vaigai SHP      | Vaigai   | 6000          |

#### 6.4.6 Waste generation

Waste generation data for Tirunelveli Municipal area for the last 5 year is presented in the table given below. No segregation was available.

| Year      | Solid waste Generation (MT/year) |  |  |  |  |
|-----------|----------------------------------|--|--|--|--|
| 2006-2007 | 23352 M.T                        |  |  |  |  |
| 2007-2008 | 24428M.T                         |  |  |  |  |
| 2008-2009 | 26184 M.T                        |  |  |  |  |
| 2009-2010 | 38732 M.T                        |  |  |  |  |
| 2010-2011 | 39434 M.T                        |  |  |  |  |

 Table 6.31: Solid Waste Generation Data

#### 6.4.7 RE Strategy for Residential sector

The residential sector in Tirunelveli is the largest consumer of electricity. The residential sector roughly consumes 46% of total electricity consumption of 290.91 MU in Tirunelveli city. However, in comparison to the consumption and subsequent emissions from use of LPG and Kerosene in residential sector, electricity contributed only a mere fraction towards emissions. The total emissions share of this sector was about 22% to overall emissions value. LPG is the major fraction 76.64% of energy consumed by the residential sector can substantially reduce fossil fuel consumption and green house gas emissions. Different renewable energy options have been proposed based on technology available and economic feasibility. Only those renewable energy devices are recommended which are technically proven, commercially available and attractive in terms of financial benefit from energy savings.

#### (i) Installation of Solar Water Heating System

The target in 5 years for introduction of SWHs is set at 80% of residential consumers who are already using electric geysers for their daily hot water requirement. Introduction of solar water heating system could save up to 16.5MU energy per year. Cost implication and energy savings potential is presented in the table below.

|                                                                     | J       |        |
|---------------------------------------------------------------------|---------|--------|
| Particulars                                                         |         | Unit   |
| Total Residential household                                         | 125378  | Nos.   |
| Total Residential household after being accounted for in apartments | 119258  | No.s   |
| Residential household using geysers                                 | 11%     |        |
| Target to replace electric geyser by SWH in 5 years                 | 80%     |        |
| Average size of domestic SWH (2 sqm collector area)                 | 100/125 | LPD    |
| Number of SWH to be installed in five years                         | 10495   | Nos.   |
| Total collector area in sqm                                         | 20989   | Sqm    |
| Total energy saved in five years                                    | 16.5    | MU     |
| Indicative cost of installation                                     | 2623.68 | Lakh   |
| MNRE subsidy @Rs.3300.00 per sqm                                    | 692.65  | Lakh   |
| Cost of energy savings                                              | 578.52  | Lakh   |
| Payback period                                                      | 3       | years  |
| Emission reduction per year                                         | 13389   | Tonnes |

Table 6.32: Target for SWHs installation in Tirunelveli City

#### (ii) Use of Solar cookers (Box and dish type)

Both box type solar cooker and dish type solar cooker can be promoted in the urban areas. Box type solar cooker is an ideal device for domestic cooking during most of the year, except for the monsoon season and cloudy days. It however cannot be used for frying or chapatti making. It is durable and simple to operate. On the other hand, dish type solar cooker can be used for indoor cooking. The stagnation temperature at the bottom of the cooking pot could be over 300°C depending upon the weather conditions. The temperatures attained with this cooker are sufficient for roasting, frying and boiling. Regular use of a box type solar cooker may save 3-4 LPG cylinders per year. The use of solar cooker to its full capacity may result in savings up to 10 LPG cylinders per year at small establishments. Setting a target of 15% residential consumer to adopt solar cooker (75% box type and 25% dish type) in the 5 years period, a total of 0.40 million kg of LPG could be saved by reducing 1378 tonnes of GHG from Tirunelveli City (considering specific emission from LPG as 0.24 kg CO2 per kWh).

| able 0.33: Target for introducing solar cooker in Tiruneiven City |        |      |  |  |
|-------------------------------------------------------------------|--------|------|--|--|
| Particulars                                                       |        | Unit |  |  |
| Total Residential household                                       | 125378 | Nos. |  |  |
| Household having facility to install a solar cooker               | 30%    |      |  |  |
| Target for introducing of solar cooker in 5 years                 | 15%    |      |  |  |
| Number of Solar Cooker to be installed in 5 years plan            | 5642   | Nos. |  |  |
| Average savings of LPG domestic cylinder per year per solar       |        |      |  |  |
| cooker (14kg)                                                     | 5      | Nos. |  |  |
| Total LPG saved in five years                                     | 394941 | kg   |  |  |
| Total energy saved in five years                                  | 5.74   | MU   |  |  |
| Indicative cost of installation (75% box type & 25% SK-14)        | 148.10 | Lakh |  |  |
| MNRE subsidy for solar cooker @30%                                | 44.43  | Lakh |  |  |
| Cost of energy savings                                            | 98.74  | Lakh |  |  |

| Table 6.33 | : Target for | introducing | solar | cooker | in | Tirunelveli | Citv |
|------------|--------------|-------------|-------|--------|----|-------------|------|
|            |              |             |       |        |    |             |      |

| Particulars                      |      | Unit   |
|----------------------------------|------|--------|
| Payback period                   | 1.05 | years  |
| Emission reduction in five years | 1378 | Tonnes |

#### (iii) Solar lanterns to replace kerosene lamps

Solar lantern has the average capacity of providing three hours of continuous light from a single charge per day, and can work as source of light for poor families without electricity. Kerosene is the main source of burning light in poor families in Tirunelveli particularly during load shedding hours and assuming that 8% of population use kerosene lanterns during load shedding to illuminate their houses. Average consumption of kerosene per household is 3 liters per month. Assuming a household uses 3-4 lanterns, consumption of one lantern will be about 3-4 liters per month. Targeting 15% of population to replace at least one kerosene lantern with solar about 0.05 million liters of kerosene could be saved reducing 138 tonnes of GHG per year. Detailed techno-commercial is provided in the table below.

| Particulars                                  |        | Unit   |
|----------------------------------------------|--------|--------|
| Total Residential household                  | 125378 | Nos.   |
| Residential household use kerosene lamps     | 8%     |        |
| Target to replace kerosene lamp in 5 years   | 15%    |        |
| Number of SL to be installed in 5 years plan | 1505   | Nos.   |
| Total kerosene lamp replaced                 | 1505   | Nos.   |
| Indicative cost of installation              | 45.14  | Lakh   |
| Kerosene saved                               | 54163  | Liters |
| Savings in terms of Electricity              | 0.54   | MU     |
| Cost of kerosene savings                     | 10.83  | Lakh   |
| MNRE subsidy @Rs.81.00 per Wp                | 12.19  | Lakh   |
| Payback period                               | 3.0    | years  |
| Emission reduction per year                  | 138    | Tonnes |

Table 6.34: Target for introducing solar lanterns in Tirunelveli City

#### (iv) Use Solar Home Systems (SHS)

A Solar Home System is a fixed indoor lighting system and consists of solar PV module, battery and balance of systems. Capacity of such system could be of 18Wp, 37Wp and 74Wp for different configuration. The luminaries used in the above systems comprise compact fluorescent lamp (CFL) of 7 W / 9 W / 11 W capacities respectively. The fan is of DC type with less than 20 W rating. One Battery of 12 V, 40 / 75 Ah capacity is also provided with SPV modules of 37Wp / 74Wp as required. The system will work for about 4 hours daily, if charged regularly. The Solar Home Lighting systems have been proposed to replace kerosene lamps used by 8% population in Tirunelveli Municipality area during load shedding hours. A 74Wp Solar Home System can replace 3-4 kerosene lamps with 4-5 hours backup hence replacing entire need of kerosene, which is estimated at an average of 3 liters per month per household. Assuming 20% replacement in the planned 5 years period an estimated amount of 315 kiloliters of kerosene could be saved reducing 801 tonnes of GHG emission from the city. The potential of kerosene replacement with Solar Home Systems and financial implication thereon is indicated in the table below.

| Particulars                                      |        | Unit   |
|--------------------------------------------------|--------|--------|
| Capacity of residential Solar Home System        | 74     | Wp     |
| Number lights per Solar Home System              | 4      | Nos.   |
| Number of Kerosene lamp replaced by SHS          | 4      | Nos.   |
| Consumption of kerosene per household/month      | 13     | Liters |
| Cost of kerosene per liter in the market         | 20     | INR    |
| Cost of kerosene per year per household          | 3144   | INR    |
| Indicative cost of installing a SHS              | 16000  | INR    |
| MNRE subsidy @Rs.81.00 per Wp                    | 5994   | INR    |
| Payback period when replacing the kerosene lamps | 3.2    | years  |
|                                                  |        |        |
| Particulars                                      |        | Unit   |
| Total Residential household                      | 125378 | Nos.   |
| Residential household use kerosene lamps         | 8%     |        |
| Target to replace kerosene lamp in 5 years       | 20%    |        |
| Number of SHS to be installed in 5 years plan    | 2006   | Nos.   |
| Total kerosene lamp replaced                     | 8024   | Nos.   |
| Indicative cost of installation                  | 320.97 | Lakh   |
| Kerosene saved                                   | 315    | KL     |
| Savings in terms of Electricity                  | 3      | MU     |
| Cost of kerosene savings                         | 63     | Lakh   |
| MNRE Subsidy @Rs.81.00 per Wp                    | 120    | Lakh   |
| Payback period                                   | 3.2    | years  |
| Emission reduction in five years                 | 801    | Tonnes |

Table 6.35: Target for introducing solar home system in Tirunelveli City

#### (v) Using Solar PV for Home Inverters

Use of solar panels to charge Home Inverter system could be an attractive option as standby power supply system during load shedding hours. The power supply situation in Tirunelveli is very poor. About 6-7 hours load shedding occurs per day in most of the places of Tirunelveli city. About 52% of residential consumer use inverters during load shedding hours. Assuming that 13% of households who are already using inverters will adopt the 250 Wp solar PV systems to charge their inverter battery, an aggregate of 611 kWp solar PV systems could be installed in the residential buildings, which will generate 1 MU green energy per year and reduce the load demand and emission by 743 tonnes per year. It is assumed that MNRE will provide Rs. 57 per Wp in subsidy for these system. The potential of energy savings, green house gas emission reduction and budgetary financial implication is indicated in the table below.

Table 6.36: Target for introducing Solar PV for Home Inverters inTirunelveli City

| Particulars                                                |        | Unit |
|------------------------------------------------------------|--------|------|
| Capacity of solar PV system for Home Inverter              | 250    | Wp   |
| Indicative cost of incorporating Solar PV to Home Inverter | 43750  | INR  |
| Total Residential household                                | 125378 | Nos. |
| Residential household use Inverter during load shedding    | 13%    |      |
| Target to introduce solar charger for inverter in 5 years  | 15%    |      |
| Number of solar inverter to be installed in 5 years plan   | 2445   | Nos. |
| Total PV capacity installed                                | 611    | kWp  |
| Total Energy generated by PV arrays in five years          | 1      | MU   |

| Particulars                      |      | Unit   |
|----------------------------------|------|--------|
| Cost of energy saved             | 32   | Lakh   |
| Indicative cost of installation  | 1070 | Lakh   |
| MNRE subsidy @Rs.57.00 per Wp    | 348  | Lakh   |
| Payback period                   | 22   | years  |
| Emission reduction in five years | 743  | Tonnes |

#### (vi) Using Solar PV for replacement of DG/ Kerosene Generator sets

Due to poor power supply situation, assuming that about 6% of resident of Tirunelveli use typically 5-10kW DG/ kerosene generator sets during the load shedding hours. Solar PV power packs can be used to replace those polluting generator sets with high operating cost. A 1000 Wp solar PV power pack has been considered for an average household in Tirunelveli. For 5-year framework 10 % households have been taken into consideration for replacement of DG /kerosene sets with solar PV systems with a target to save 572 kilo liters of diesel per year reduce GHG in the tune of 1454 tonnes per year.

 Table 6.37: Target for replacement of diesel generator sets with PV Power

 Pack in Tirunelveli City

| Particulars                                                      |        | Unit   |
|------------------------------------------------------------------|--------|--------|
| Capacity of solar PV system                                      | 1      | kWp    |
| Indicative cost of incorporating Solar power pack                | 2.60   | Lakh   |
| Total Residential household                                      | 125378 | Nos.   |
| Total Residential household after being accounted for in         |        |        |
| apartments                                                       | 119258 | Nos.   |
| Residential household use generators during load shedding        | 6%     |        |
| Target to introduce solar power pack in 5 years                  | 10%    |        |
| Number of solar power pack to be installed in 5 years plan       | 716    | Nos.   |
| Total PV capacity installed                                      | 716    | kWp    |
| Total Energy generated by PV arrays in five years                | 1.07   | MU     |
| Typical generator set used                                       | 5-10   | kW     |
| Average fuel consumption per day for 4-6 hours load shedding     | 4      | liters |
| Amount of diesel saved in five years for entire city             | 572    | KL     |
| Cost of Diesel saved                                             | 228.98 | Lakh   |
| Indicative cost of installation                                  | 1860   | Lakh   |
| MNRE subsidy @Rs.57.00 per kWp                                   | 408    | Lakh   |
| Payback period                                                   | 6.34   | years  |
| Total Emissions reduction in five year for replacement of diesel | 1454   | Tonnes |

#### (vii) RE systems for residential Apartments/ housing complexes

The number of apartment buildings and residential complexes in Tirunelveli are much less compared to Coimbatore and Trichy. Also, since the data for number of apartments in the city was unavailable some indicative renewable energy technologies that can be introduced to reduce and limit carbon emissions from residential apartments are SWH systems and Solar PV packs for back up. The scale of implementation remains directly proportional to quantum of investment available from different sources and the number of consumers.

#### (viii) Summary of RE strategy for Residential Sector

Implementation of renewable energy projects as proposed above will save 27.98MU energy per year, which will reduce GHG of 17902 tonnes per year. When the target is, residential sector strategy will meet 5.8% of total target for energy savings for the city as

per mandate of development of solar city. The entire target could be achieved with a total investment of about Rs.6068 lakh in the 5 years period where contribution from MNRE will be about Rs.1626 lakh with existing schemes and balance fund could be met from users, state or other funding agencies. It is recommended that promotion of solar water heaters in residential sector should be given higher priority, as energy savings from solar water heaters is the highest.

| RE Strategy<br>for residential<br>sector | Potential Users | Target Capacity | Units of Target | Investment (Lakh) | MNRE subsidy<br>(Lakh) | Beneficiary's<br>contribution (Lakh) | Amount of Energy<br>Saved (MU) | Emissions<br>Reductions<br>(Tonnes) | % contribution to<br>target |
|------------------------------------------|-----------------|-----------------|-----------------|-------------------|------------------------|--------------------------------------|--------------------------------|-------------------------------------|-----------------------------|
| Solar water<br>Heaters                   | 13792           | 10495           | Nos.            | 2624              | 693                    | 1931                                 | 16.53                          | 13389                               | 3.43%                       |
| Solar cookers                            | 37613.4         | 5642            | Nos.            | 148               | 44                     | 104                                  | 5.74                           | 1378                                | 1.19%                       |
| Solar Lantern                            | 10030           | 1505            | Nos.            | 45                | 12                     | 33                                   | 0.54                           | 138                                 | 0.11%                       |
| Solar Home<br>System                     | 10030           | 2006            | Nos.            | 321               | 120                    | 201                                  | 3.17                           | 801                                 | 0.66%                       |
| Solar Home<br>inverter                   | 16299           | 2445            | Nos.            | 1070              | 348                    | 721                                  | 0.92                           | 743                                 | 0.19%                       |
| PV for replacing DG sets                 | 7523            | 716             | Nos.            | 1860              | 408                    | 1453                                 | 1.07                           | 1454                                | 0.22%                       |
| SWHS for<br>Residential<br>Apartment     | 0               | 0               | LPD             | 0                 | 0                      | 0                                    | 0.00                           | 0                                   | 0.00%                       |
| PV for<br>Residential<br>Apartment       | 0               | 0               | kWp             | 0                 | 0                      | 0                                    | 0.00                           | 0                                   | 0.00%                       |
|                                          |                 |                 |                 | 6068              | 1626                   | 4442                                 | 27.98                          | 17902                               | 5.80%                       |

Table 6.38: Summary of RE Strategy for Residential sector in Tirunelveli City

#### 6.4.8 RE Strategy for Commercial and Institutional Sector

The commercial sector has a lower contribution to the total energy consumption in Tirunelveli city. The sector consumes about 9.3% of total electricity consumed in the city with its 18 colleges and institutes, 32 schools, 43 private medical service facilities, 40 hotels. Different strategies are prepared for different categories of consumers based on type and quantum of energy consumed and availability of resource and space to generate renewable energy in their premises. While preparing the strategy, only techno economically viable and commercially available renewable energy options are considered.

#### **RE Strategy for Hotels**

There aren't any big hotels in Tirunelveli as most commercial accommodation facilities are smaller in size with only a handful being 2 or 3 star hotels or budget establishments. Major energy requirement such as hot water and electricity during load shedding hours

could be met by solar energy. Solar thermal systems can be used to generate hot water or steam for cooking. Solar PV power systems can be used to reduce or eliminate use of diesel generators which are being used during load shedding hours. Since a clear budget based classification couldn't be obtained, techno-commercial calculations for hotels haven't been performed. Nevertheless, similar calculations in Coimbatore and Trichy action plans should suffice to undertake projects in the hotel industry in Tirunelveli city.

#### **Renewable Energy Systems for Restaurants**

Tirunelveli has only a few restaurants and eateries that mostly comprise of street corner establishments and small restaurants called Dhaba or Mess catering to the lower middle class and middle class of the city. Solar water heaters can easily be introduced in these small restaurants to meet their hot water demand for cooking and utensil cleaning. Cart food is very popular in Tirunelveli. There are hundreds of food cart which use kerosene or gas operated lights for illumination. Solar Lanterns will be a profitable and attractive option for these food cart operators.

#### **Renewable Energy Systems for Hospitals**

The Tirunelveli city has 5 Corporation maintained dispensaries, 8 urban health posts and 3 maternity homes and some private hospitals as well whose number could not be ascertained. Since a segregation based on number of beds also could not be found, a general summary is being illustrated without case examples to offer an insight on the potential implementation of renewable energy systems for the health sector in Tirunelveli city. Targeting a 50% target to introduce renewable energy systems in hospitals in the city, total energy savings of 0.59MU and emissions reduction of 505 tonnes of  $CO_2$  can be achieved.

| Hospitals           | Number of     | RE System Proposed  |                                     |          |                 |  |  |
|---------------------|---------------|---------------------|-------------------------------------|----------|-----------------|--|--|
|                     | Establishment | Solar Wat<br>System | Solar Water Heating<br>System (LPD) |          | / System<br>Vp) |  |  |
|                     |               | Unit                | Total                               | Unit     | Total           |  |  |
|                     |               | Capacity            | Capacity                            | Capacity | Capacity        |  |  |
| Urban Health Posts  | 8             | 2000                | 16000                               | 2        | 16              |  |  |
| Maternity Homes     | 3             | 10000               | 30000                               | 5        | 15              |  |  |
| Corporation         | 5             | 5000                | 25000                               | 10       | 50              |  |  |
| Dispensaries        |               |                     |                                     |          |                 |  |  |
| Aggregate           | 16            |                     | 71000                               |          | 81              |  |  |
| Target in 5 years   |               | 50%                 | 35500                               | 50%      | 41              |  |  |
| Energy Savings (MU) |               |                     | 0.53                                |          | 0.06            |  |  |
| Total Emission      |               |                     | 453                                 |          | 52              |  |  |
| reduction           |               |                     |                                     |          |                 |  |  |

 Table 6.39: Summary of RE systems for Hospitals

#### **Renewable Energy Systems for Educational Institutes**

Educational institutes are major establishments in the commercial sector of a city. Although they are not major source of energy consumption in the city yet they account for a substantial degree of energy utilization. An informal survey revealed the following figures of educational institutes in Tirunelveli. The city has 32 schools of which 22 are elementary schools, 5 are middle and 5 higher secondary schools. There are a total of 150 colleges including arts, science and engineering. The institutes having hostels can use solar water heater to supply hot water to the bath rooms and the kitchen thereby providing bathing comfort to the students and hot water for cooking.

The two renewable energy options can effectuate a considerable energy saving in educational institutes are the solar water heaters and solar PV systems. The potential for energy savings in different educational institutes in Tirunelveli is tabulated below. The figures give a gross idea about the financial implications and emission reductions rendered by installation of the aforementioned renewable energy systems.

| Educational                              | Number of     |                                                                                          |                   | R                                      | E System P        | ropose                      | ed                |                           |                   |
|------------------------------------------|---------------|------------------------------------------------------------------------------------------|-------------------|----------------------------------------|-------------------|-----------------------------|-------------------|---------------------------|-------------------|
| Institutes                               | Establishment | Solar Cooker/<br>Steam<br>generating<br>system for<br>Cooking (sqm<br>collector<br>area) |                   | Solar Water<br>Heating System<br>(LPD) |                   | Solar PV<br>System<br>(kWp) |                   | Biogas<br>System<br>(CuM) |                   |
|                                          |               | Unit<br>Capacity                                                                         | Total<br>Capacity | Unit<br>Capacity                       | Total<br>Capacity | Unit<br>Capacity            | Total<br>Capacity | Unit<br>Capacity          | Total<br>Capacity |
| Elementary schools                       | 22            | 20                                                                                       | 440               | 0                                      | 0                 | 1                           | 22                | 0                         | 0                 |
| Middle Schools                           | 5             | 0                                                                                        | 0                 | 0                                      | 0                 | 2                           | 10                | 0                         | 0                 |
| Higher Secondary<br>Schools              | 5             | 0                                                                                        | 0                 | 0                                      | 0                 | 2                           | 10                | 0                         | 0                 |
| Colleges (Arts,<br>Science, Engineering) | 150           | 200                                                                                      | 30000             | 10000                                  | 1500000           | 10                          | 1500              | 20                        | 3000              |
| Aggregate                                | 182           |                                                                                          | 30440             |                                        | 1500000           |                             | 1542              |                           | 3000              |
| Target in 5 years                        |               | 25%                                                                                      | 7610              | 25%                                    | 375000            | 25<br>%                     | 386               | 25%                       | 750               |
| Energy Savings (MU)                      |               |                                                                                          | 4.95              |                                        | 5.63              |                             | 0.58              |                           | 1.59              |
| Total Emission<br>reduction              |               |                                                                                          | 4205              |                                        | 4781              |                             | 492               |                           | 1353              |
| Investment (Lakh<br>INR)                 |               | 15000                                                                                    | 1142              | 200                                    | 750               | 1.7<br>5                    | 675               | 15000                     | 113               |

 Table 6.40: Summary of RE strategy for educational institutes

#### (i) Summary of RE strategy for Commercial and Institutional Sector

The suggested implementations as described above are able to achieve about 3% reduction in total energy savings through the RE strategies for commercial and institutional sector. The strategy, once implemented fully will save 13.33 MU of energy per year and reduce 11334.63 tonnes of GHG emissions per year. The primary focus should be given to introduction of solar water heaters which will save 6.16MU per year. Solar PV power plant should be introduced for diesel abatement in the establishments that are using diesel sets as standby power supply source.

| Table 0.11. M2 belategy for commercial and institutional sector |       |                    |                                   |                                  |                                             |                                         |                                     |  |
|-----------------------------------------------------------------|-------|--------------------|-----------------------------------|----------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------|--|
| RE Strategy<br>for<br>Commercial<br>and<br>Institutional        | Units | Target<br>Capacity | Total<br>Investment<br>(Lakh INR) | MNRE<br>subsidy<br>(Lakh<br>INR) | Sate/ NMC/<br>Beneficiary's<br>contribution | Amount<br>of<br>Energy<br>Saved<br>(MU) | Emissions<br>Reductions<br>(Tonnes) |  |
| Solar Steam<br>Cooker for<br>Cooking in<br>Schools,<br>Hostels  | sqm   | 7610               | 1141.50                           | 410.94                           | 730.56                                      | 4.95                                    | 4204.53                             |  |
| Solar Water<br>Heaters for<br>Hospitals                         | LPD   | 410500             | 821.00                            | 270.93                           | 550.07                                      | 6.16                                    | 5233.88                             |  |
| Solar PV<br>Power Plant<br>for Hotels,<br>Hospitals.            | kWp   | 426                | 745.50                            | 242.82                           | 502.68                                      | 0.64                                    | 543.15                              |  |
| Biogas for<br>Hotels<br>Total                                   | CuM   | 750                | 112.50<br>2820.50                 | 78.75                            | 33.75<br>1817.06                            | 1.59<br>13.33                           | 1353.08                             |  |
| 1000                                                            |       |                    | _5_0.00                           | 1000111                          | 101/100                                     | 10.00                                   | 1100 1100                           |  |

#### Table 6.41: RE Strategy for Commercial and Institutional Sector

#### 6.4.9 RE Strategy for Industrial Sector

The industry sector in Tirunelveli consumes 36% of total electricity. Most industries are small or medium scale. As data regarding the exact number and classification of industries was not verifiable, typical measures based on the scale of industrial establishment-are described below to facilitate implementations in the industrial sector in Tirunelveli city.

| Industry Scale | Indicative Industry type           | Typical measures                |
|----------------|------------------------------------|---------------------------------|
| Small scale    | Food based cottage industry,       | Solar Water Heating, Solar      |
|                | Textile and dyeing units           | Lanterns etc.                   |
| Medium scale   | Textile plants, Paper and food     | Solar Water Heating, Solar PV   |
|                | processing industry, Metal casting | systems, Solar Cooking/Steaming |
|                | units                              | systems etc.                    |
| Large scale    | Cement plants, Machinery and       | Solar Water Heating systems,    |
|                | beverage industry                  | Solar PV systems, Biomass       |
|                |                                    | systems etc.                    |

Table 6.42: Indicative measures for industrial sector

#### 6.4.10 RE Strategy for Municipal Sector

The municipal sector of Tirunelveli city consumes 26% of total electrical energy in the city. The primary consumers in this sector are street lights, outdoor lights in parks, markets, office buildings of the Municipal Corporation, advertising hoardings, water supply, sewerage treatment plant etc. Renewable energy devices are suggested to all categories of consumers depending upon the energy demand. The sector has ample opportunity to save energy through introducing renewable energy and energy conservation measures and could show case these initiatives to encourage people to adopt further.

#### (i) Renewable Energy System for Municipality building and other Office Buildings

The official municipal corporation buildings consume in total about 2.95 MU of electricity per year. The loads consume most of the energy are air conditioners, fans and lighting loads. A 10kWp PV Power plant is recommended for each of the five official buildings to supply power during load shedding hours.

#### (ii) Renewable Energy System for Markets

There are 4 main markets in Tirunelveli which included 3 weekly and one daily market. Primarily the shop owners use electricity to power the electrical equipments like bulb, tube lights, fans, Acc etc. Taking the note of load shedding in the city and the increasing bill of diesel fuel for generators, some suggestions for RE technologies for the commercial shops are provided, which if implemented will result in substantial reduction in conventional energy and the resultant emissions.

#### (iii) RE System for Outdoors lighting (Streets, Traffic, Road safety etc.)

The city has about 12231 outdoor lights, which have been fixed for illumination of streets, wards, etc. The objective is to introduce one solar PV outdoor light in every three conventional lights so that minimum illumination level is maintained during load shedding hours. The tables below indicate targets, investment thereon and energy savings potential etc.

| Particulars                                                | Numbers | RE System Proposed                        |                             |                            |  |  |  |
|------------------------------------------------------------|---------|-------------------------------------------|-----------------------------|----------------------------|--|--|--|
|                                                            |         | Solar Water<br>Heating<br>System<br>(LPD) | Solar PV<br>System<br>(kWp) | Biogas<br>System (Cu<br>m) |  |  |  |
|                                                            |         | Total<br>Capacity                         | Total<br>Canacity           | Total<br>Capacity          |  |  |  |
| Municipal office buildings                                 | 5       | 0                                         | 50                          | 0                          |  |  |  |
| Parks, recreation centres<br>maintained by the corporation | 142     | 0                                         | 1420                        | 0                          |  |  |  |
| Hospitals, clinics maintained by the corporation           | 18      | 36000                                     | 90                          | 0                          |  |  |  |
| Schools maintained by the corporation                      | 32      | 0                                         | 160                         | 0                          |  |  |  |
| other buildings/sites                                      | 66      | 0                                         | 330                         | 0                          |  |  |  |
| Bus Stands and shelters                                    | 72      | 0                                         | 360                         | 0                          |  |  |  |
| Kaliyanamandapam                                           | 3       | 15000                                     | 15                          | 60                         |  |  |  |
| Commercial Complexes                                       | 5       | 0                                         | 50                          | 0                          |  |  |  |
| Daily Market                                               | 1       | 0                                         | 5                           | 10                         |  |  |  |
| Weekly Market                                              | 3       | 0                                         | 6                           | 30                         |  |  |  |
| Pay and use toilets                                        | 213     | 0                                         | 426                         | 1065                       |  |  |  |
| Reading Rooms                                              | 29      | 0                                         | 29                          | 0                          |  |  |  |
| Aggregate                                                  | 560     | 51000                                     | 2941                        | 1165                       |  |  |  |
| Target in 5 years                                          |         | 10200                                     | 588                         | 117                        |  |  |  |
| Energy Savings (MU)                                        |         | 0.15                                      | 0.88                        | 0.25                       |  |  |  |

 Table 6.43: Summary of RE Strategy for Municipal sector

| Total Emission reduction | 130 | 750 | 210 |
|--------------------------|-----|-----|-----|

#### 6.4.11 EE Strategy for Residential sector

Residential sector consumes largest amount of energy. Important proven and cost effective measures for the sector are described in this section. Based on the survey, it was found that incandescent lights are still used a lot in the residential sector. Utilizing the survey data the savings due to replacement of incandescent lamps with CFL are calculated and are presented in the table below.

#### (i) Replace Incandescent Lamps with Fluorescent

Incandescent bulbs are the major and the most common source of high energy consumption in the residential area. Replacement of incandescent lamps has acquired a substantial precedence in all the energy efficiency strategies as the most feasible option. The techno commercial for replacement of incandescent bulbs with CFL is given below. An assumption of 42% households utilizing CFLs has been considered as target group for replacements and 100% replacement is assumed for the calculations below.

| Table 6.44: Replacement of incandescent lamps with huorescent |          |        |  |  |  |  |
|---------------------------------------------------------------|----------|--------|--|--|--|--|
| Particulars                                                   |          | Unit   |  |  |  |  |
| Total Residential household                                   | 125378   | Nos.   |  |  |  |  |
| Household using incandescent bulb                             | 42%      |        |  |  |  |  |
| Target to replace incandescent bulb with CFL                  | 100%     |        |  |  |  |  |
| Number of incandescent bulb to be replaced per household      | 4        | Nos.   |  |  |  |  |
| Total number of incandescent bulb to be replaced              | 208850   | Nos.   |  |  |  |  |
| Indicative cost of installation                               | 313      | Lakh   |  |  |  |  |
| Energy saved by replacing 60W bulb with 15W CFL               | 20582134 | kWh    |  |  |  |  |
| Cost of electricity savings                                   | 720      | Lakh   |  |  |  |  |
| Payback period                                                | 0.43     | years  |  |  |  |  |
| Emission reduction per year                                   | 16672    | Tonnes |  |  |  |  |

Table 6.44: Replacement of incandescent lamps with fluorescent

#### (ii) T5 tube light + Electronic Ballast to replace T12/T8 tube light+ Magnetic Ballast

A conventional tube light (with magnetic ballast consuming 15W) consumes around 55 watts. It can be replaced with T5 tube (28W) with electronic ballast (4W) which will require around 32W. The calculations have been done for a period of 5 years assuming 80 % replacement of T 12 /T8 tube lights can be possible in 83% of the households using T12/T8 tube lights.

Table 6.45: T5 tube light + Electronic Ballast to replace T12/T8 tube light+ Magnetic Ballast

| Particulars                                             |         | Unit |
|---------------------------------------------------------|---------|------|
| Total Residential household                             | 125378  | Nos. |
| Household using T8/T12 tube lights                      | 94%     |      |
| Target to replace T8/T12 by T5 tube lights              | 80%     |      |
| Number of T8/T12 to be replaced per household           | 2       | Nos. |
| Total number of T8/T12 tube lights to be replaced       | 188402  | Nos. |
| Indicative cost of installation                         | 942     | Lakh |
| Energy saved by replacing T8/T12(with magnetic ballast) | 6326539 | kWh  |

| Particulars                       |      | Unit   |
|-----------------------------------|------|--------|
| with T5 (with electronic ballast) |      |        |
| Cost of electricity savings       | 221  | Lakh   |
| Payback period                    | 4.25 | years  |
| Emission reduction per year       | 5124 | Tonnes |

#### (iii) Efficient ceiling fans to replace conventional ceiling fans

Replacing conventional fans with star rated fans can save substantial amount of electrical energy and money. The financial and technical analysis for replacement of conventional ceiling fans in residential sector of Tirunelveli city assumes that 50% replacement should be possible in almost 91% of the households.

#### Table 6.46: Efficient Ceiling Fans to Replace Conventional Ceiling Fans

| Particulars                                             |         | Unit   |
|---------------------------------------------------------|---------|--------|
| Total Residential household                             | 125378  | Nos.   |
| Household using Conventional Fans                       | 91%     |        |
| Target to replace Conventional fans by EE Fans          | 50%     |        |
| Number of Conventional fan to be replaced per household | 3       | Nos.   |
| Total number of Conventional Fans to be replaced        | 171976  | Nos.   |
| Indicative cost of installation                         | 2580    | Lakh   |
| Energy saved by replacing Conventional Fans by EE Fans  | 9286703 | kWh    |
| Cost of electricity savings                             | 325     | Lakh   |
| Payback period                                          | 8       | Years  |
| Emission reduction per year                             | 7522    | Tonnes |

#### (iv) Replacement of conventional air-conditioners with EE star rated ACs

In Tirunelveli city it is assumed that approximately 14% of residential households had 1.5 ton air conditioners on average. The energy consumption by a 1.5 ton unit is approximately 7.2 kWh per day. For calculating the energy savings by switching to more energy efficient air conditioners it is assumed that 14% households in Tirunelveli owns an air –conditioner and 10% air conditioners can be assumed as potential target for replacement with energy efficient ACs.

## Table 6.47: Replacement of conventional air-conditioners with EE star rated ACs

| Particulars                                             |        | Unit   |
|---------------------------------------------------------|--------|--------|
| Total Residential household                             | 125378 | Nos.   |
| Household using Conventional AC                         | 14%    |        |
| Target to replace Conventional ACs by EE star rated AC  | 10%    |        |
| Number of Conventional ACs to be replaced per household | 1      | Nos.   |
| Total number of Conventional ACs to be replaced         | 1701   | Nos.   |
| Indicative cost of installation                         | 468    | Lakh   |
| Energy saved by replacing Conventional ACs by EE Star   | 689059 | kWh    |
| Rated ACs                                               |        |        |
| Cost of electricity savings                             | 24     | Lakh   |
| Payback period                                          | 19     | Years  |
| Emission reduction per year                             | 558    | Tonnes |

#### (v) Replacement of conventional refrigerators with EE star rated refrigerators

One of the most common appliance used in homes are the refrigerators. With increasing affordability refrigerators have become an indispensable item in most Indian households. They come in the capacity range of 200-400 liters. These days many BEE star rated energy efficient refrigerators are available in the Indian market. A conventional refrigerator of 200 watts has been taken to provide the calculations below. An assumption of 59% households with conventional refrigerators is taken to show the energy savings.

| Particulars                                               |         | Unit   |
|-----------------------------------------------------------|---------|--------|
| Total Residential household                               | 125378  | Nos.   |
| Household using Conventional Refrigerators                | 59%     |        |
| Target to replace Conventional Refrigerators by EE Star   |         |        |
| Rated Refrigerators                                       | 10%     |        |
| Number of Conventional Refrigerators to be replaced per   |         |        |
| household                                                 | 1       | Nos.   |
| Total number of Conventional Refrigerators to be replaced | 7392    | Nos.   |
| Indicative cost of installation                           | 832     | Lakh   |
| Energy saved by replacing Conventional Refrigerators by   |         |        |
| EE Star Rated Refrigerators                               | 3503766 | kWh    |
| Cost of electricity savings                               | 123     | Lakh   |
| Payback period                                            | 6.8     | Years  |
| Emission reduction per year                               | 2838    | Tonnes |

 Table 6.48: Replacement of Conventional Refrigerators with EE Star Rated

 Refrigerators

#### (vi) Replacement of conventional water pumps with EE star rated water pumps

Survey in Tirunelveli has shown that residential households use water pumps of 1.5 HP capacity which has an approximate electrical consumption of 2.2 kWh. Assuming 45% households in Tirunelveli use water pumps, 20% replacement of conventional pumps by energy efficient pumps have been targeted for energy savings.

 Table 6.49: Replacement of conventional water pumps with EE star rated

 water pumps

| Particulars                                           |           | Unit   |
|-------------------------------------------------------|-----------|--------|
| Total Residential household                           | 125378    | Nos.   |
| Household using Water Pumps                           | 45%       |        |
| Target to replace Conventional Water Pump by EE Pump  | 20%       |        |
| Number of Conventional Pumps to be replaced per       |           |        |
| household                                             | 1         | Nos.   |
| Total number of Conventional Pumps to be replaced     | 15723     | Nos.   |
| Indicative cost of installation                       | 314.45003 | Lakh   |
| Energy saved by replacing Conventional Water Pumps by |           |        |
| EE Water Pumps                                        | 1721614   | kWh    |
| Cost of electricity savings                           | 60.26     | Lakh   |
| Payback period                                        | 5.22      | Years  |
| Emission reduction per year                           | 1395      | Tonnes |

#### (vii) Summary of EE Strategy in Residential Sector

The estimated potential of energy savings in the residential sector through energy efficiency measures is 42 MU per year. The reduction of emission through EE measures in

residential sector is 34109 tonnes per year. Replacement of incandescent bulbs with CFL, conventional fans, refrigerators and air conditioners with star rated one have the most potential scope for energy savings.

| EE Measures in residential sector      | Unit  | Target   | Target Investment Amount Emissi |                 |            |  |
|----------------------------------------|-------|----------|---------------------------------|-----------------|------------|--|
|                                        | CIIIC | Canacity | (Lacs INR)                      | of              | Reductions |  |
|                                        |       | Capacity | (Lats IIII)                     | Enorgy          | (Toppos)   |  |
|                                        |       |          |                                 | Savad           | (Tomes)    |  |
|                                        |       |          |                                 | Saveu<br>(MII)  |            |  |
|                                        |       |          | 0.1.0                           | $(\mathbf{MU})$ | 4 4 4 7 9  |  |
| Indicative cost of replacing 60 watt   | Nos.  | 208850   | 313                             | 21              | 16672      |  |
| incandescent with 15 watt CFL          |       |          |                                 |                 |            |  |
| Indicative cost of replacing T12/T8    | Nos.  | 188402   | 942                             | 6               | 5124       |  |
| with T5 FTL                            |       |          |                                 |                 |            |  |
| Indicative cost of replacing           | Nos.  | 171976   | 2580                            | 9               | 7522       |  |
| conventional Fans with EE star rated   |       |          |                                 |                 |            |  |
| fans                                   |       |          |                                 |                 |            |  |
| Indicative cost of replacing           | Nos   | 1701     | 468                             | 1               | 558        |  |
| acquantional AC with EE star rated     | 1105. | 1701     | +00                             | 1               | 550        |  |
| AC                                     |       |          |                                 |                 |            |  |
| AC                                     |       | =200     |                                 |                 |            |  |
| Indicative cost of replacing           | Nos.  | 7392     | 832                             | 4               | 2838       |  |
| conventional refrigerator with EE star |       |          |                                 |                 |            |  |
| rated refrigerator                     |       |          |                                 |                 |            |  |
| Indicative cost of installing a EE     | Nos.  | 15723    | 314                             | 2               | 1395       |  |
| water pump                             |       |          |                                 |                 |            |  |
| Total                                  |       |          | 5449                            | 42              | 34109      |  |

| Table 1 : | Summary | of EE Strategy in | Residential Sector |
|-----------|---------|-------------------|--------------------|
|-----------|---------|-------------------|--------------------|

#### 6.4.12 EE Strategy for Commercial Sector

The commercial sector comprises primarily of offices, shopping malls, markets, hotels and restaurants and comprises of a mix of air conditioned and non air-conditioned buildings. The prime load centers in the sector are air-conditioning, lighting and pumps/equipment. The major share of electricity consumption is attributed to by air-conditioning in a full conditioned building followed by lighting, whereas the prime energy consumption in a non-air conditioning is lighting followed by space conditioning (coolers, fans, etc.).

The energy conservation and efficiency measures targeted for commercial sector thus should be aimed at enhancing efficiency levels and deploying conservation options for lighting and air conditioning. Thus efficiency and conservation have to be addressed in existing and new buildings to affect overall demand and consumption reduction.

#### (i) Replace Incandescent Lamps with Fluorescent

CFL usage has been widespread in the last few years and it is high time that all commercial establishments should voluntarily replace the high energy consuming incandescent lamps with CFLs. It is assumed that 16% of the commercial sector establishments use incandescent bulbs and 100% of establishment use T8/T12 tube lights. A target to replace 80% of the incandescent bulbs and the same amount of T8/T12 tube lights in the commercial sector is assumed so as to give the calculations below.

| Particulars                                             |        | Unit   |
|---------------------------------------------------------|--------|--------|
| Total Commercial Consumers                              | 8861   | Nos.   |
| Consumers using incandescent bulb                       | 16%    |        |
| Target to replace incandescent bulb with CFL            | 80%    |        |
| Number of incandescent bulb to be replaced per consumer | 10     | Nos.   |
| Total number of incandescent bulb to be replaced        | 11342  | Nos.   |
| Indicative cost of installation                         | 17     | Lakh   |
| Energy saved by replacing 60W bulb with 15W CFL         | 918708 | kWh    |
| Cost of electricity savings                             | 46     | Lakh   |
| Payback period                                          | 0.37   | Years  |
| Emission reduction per year                             | 744    | Tonnes |

#### Table 6.50: Replacement of incandescent lamps with fluorescent

#### Table 6.51: Replace T12/T8 tube light by T5 tube light

| Particulars                                                  |        | Unit   |
|--------------------------------------------------------------|--------|--------|
| Total Commercial Consumers                                   | 8861   | Nos.   |
| Consumers using T8/T12 tube lights                           | 100%   |        |
| Target to replace T8/T12 by T5 tube lights                   | 80%    |        |
| Number of T8/T12 to be replaced per consumer                 | 2      | Nos.   |
| Total number of T8/T12 tube lights to be replaced            | 14178  | Nos.   |
| Indicative cost of installation                              | 71     | Lakh   |
| Energy saved by replacing T8/T12(with magnetic ballast) with |        |        |
| T5 (with electronic ballast)                                 | 391302 | kWh    |
| Cost of electricity savings                                  | 20     | Lakh   |
| Payback period                                               | 3.62   | Years  |
| Emission reduction per year                                  | 317    | Tonnes |

#### (ii) Replacement of inefficient fans

Analysis of the sample survey of Tirunelveli city reveals that maximum commercial establishments in Tirunelveli city have fans. Conventional fans have an average energy consumption of 1.03kWh per day. Assuming 15% of the conventional fans in the commercial sector of Tirunelveli can be replaced with more energy efficient fans the following techno-commercials have been calculated.

#### Table 6.52: Replacement of Conventional Fans

| Particulars                                            |        | Unit   |
|--------------------------------------------------------|--------|--------|
| Total Commercial Consumers                             | 8861   | Nos.   |
| Consumers using Conventional Fans                      | 99%    |        |
| Target to replace CF by EE Fans                        | 15%    |        |
| Number of Conventional fan to be replaced per consumer | 3      | Nos.   |
| Total number of Conventional Fans to be replaced       | 3553   | Nos.   |
| Indicative cost of installation                        | 53     | Lakh   |
| Energy saved by replacing Conventional Fans by EE Fans | 124349 | kWh    |
| Cost of electricity savings                            | 6      | Lakh   |
| Payback period                                         | 8.57   | years  |
| Emission reduction per year                            | 101    | Tonnes |

#### (iii) Replacement of conventional air-conditioners with EE star rated ACs

Commercial establishments are usually equipped with air conditioners. In Tirunelveli city like in most other southern cities 1.5 tons air conditioners are more popular in the commercial buildings. Assuming that 33% of the commercial establishments own an air
conditioner, 10% target replacement of inefficient air-conditioners with more efficient conditioners are taken into consideration for the below mentioned calculations.

| Nattu ACS                                                   |        |        |
|-------------------------------------------------------------|--------|--------|
| Particulars                                                 |        | Unit   |
| Total Commercial Consumers                                  | 8861   | Nos.   |
| Consumers using Conventional ACs                            | 33%    |        |
| Target to replace Conventional ACs by EE star rated ACs     | 10%    |        |
| Number of Conventional ACs to be replaced per household     | 5      | Nos.   |
| Total number of Conventional ACs to be replaced             | 1475   | Nos.   |
| Indicative cost of installation                             | 406    | Lakh   |
| Energy saved by replacing Conventional ACs by EE Star Rated |        |        |
| ACs                                                         | 597519 | kWh    |
| Cost of electricity savings                                 | 30     | Lakh   |
| Payback period                                              | 13.58  | years  |
| Emission reduction per year                                 | 484    | Tonnes |

Table 6.53: Replacement of Conventional Air-Conditioners with EE Star Rated ACs

### (iv) Replacement of conventional refrigerators with EE star rated refrigerators

Refrigerators in commercial sector are restricted to the food outlets, restaurants, hotels, guest houses, and ice-cream parlors. General trend reveals that the refrigerators of the range of 200-400 W are found in the commercial sector of Tirunelveli City like most Indian cities. Approximately 41% of the consumers own a refrigerator and a target of replacing 10% refrigerators has been taken to show the energy saving potential of replacing conventional refrigerators in commercial sector of Tirunelveli city.

Table 6.54: Replacement of Conventional Refrigerators with EE Star RatedRefrigerators

| Particulars                                                     |        | Unit   |
|-----------------------------------------------------------------|--------|--------|
| Total Commercial Consumers                                      | 8861   | Nos.   |
| Consumers using Conventional Refrigerators                      | 41%    |        |
| Target to replace Conventional Refrigerators by EE Star Rated   |        |        |
| Refrigerators                                                   | 10%    |        |
| Number of Conventional Refrigerators to be replaced per         |        |        |
| consumer                                                        | 1      | Nos.   |
| Total number of Conventional Refrigerators to be replaced       | 363    | Nos.   |
| Indicative cost of installation                                 | 41     | Lakh   |
| Energy saved by replacing Conventional Refrigerators by EE Star |        |        |
| Rated Refrigerators                                             | 172205 | kWh    |
| Cost of electricity savings                                     | 9      | Lakh   |
| Payback period                                                  | 5      | years  |
| Emission reduction per year                                     | 139    | Tonnes |

### (v) Replacement of conventional water pumps with EE star rated water pumps

About 30% of the commercial units use water pumps. If a target of 25% is made in order to replace the inefficient water pumps with efficient star rated water pumping equipments then the following techno-commercial details ensue which are calculated below.

| Table 6.55: Replacement of conventional water pump | ps with EE star rated |
|----------------------------------------------------|-----------------------|
| water pumps                                        |                       |
| Particulars                                        | Unit                  |

| Particulars                                               |       | Unit   |
|-----------------------------------------------------------|-------|--------|
| Total Residential household                               | 8861  | Nos.   |
| Household using Water Pumps                               | 30%   |        |
| Target to replace Conventional Water Pump by EE Pump      | 25%   |        |
| Number of Conventional Pumps to be replaced per household | 1     | Nos.   |
| Total number of Conventional Pumps to be replaced         | 930   | Nos.   |
| Indicative cost of installation                           | 19    | Lakh   |
| Energy saved by replacing Conventional Water Pumps by EE  |       |        |
| Water Pumps                                               | 83736 | kWh    |
| Cost of electricity savings                               | 3     | Lakh   |
| Payback period                                            | 6.35  | years  |
| Emission reduction per year                               | 68    | Tonnes |

### (vi) Summary of EE Strategy in Commercial & Institutional Sector

The estimated energy savings potential from commercial and institutional sector through energy efficiency measures is 2.29MU per year. Potential for GHG reduction is 1853 tonnes per year.

| EE Measures                                                                                    | Units | Targets | Investment<br>(INR) | Electricity<br>Saved | Emissions<br>Saved         |
|------------------------------------------------------------------------------------------------|-------|---------|---------------------|----------------------|----------------------------|
| Indicative cost of replacing 100<br>watt incandescent with 15 watt<br>CFL                      | Nos.  | 11342   | 17                  | 0.919                | ( <b>10111165</b> )<br>744 |
| Indicative cost of replacing T8/T12<br>tube lights with T5 FTL                                 | Nos.  | 14178   | 71                  | 0.391                | 317                        |
| Indicative cost of replacing conventional fans with EE fans                                    | Nos.  | 3553    | 53                  | 0.124                | 101                        |
| Indicative cost of replacing<br>conventional AC with EE star<br>rated AC                       | Nos.  | 1475    | 406                 | 0.598                | 484                        |
| Indicative cost of replacing<br>conventional refrigerators with EE<br>star rated refrigerators | Nos.  | 363     | 41                  | 0.172                | 139                        |
| Indicative cost of installing EE water pumps                                                   | Nos.  | 930     | 19                  | 0.084                | 68                         |
| Total                                                                                          |       |         | 606                 | 2.288                | 1853                       |

#### Table 6.56: Summary of EE Strategy in Commercial & Institutional Sector

### 6.4.13 EE Strategy for Industrial Sector

Following is a list of indicative measures that can be implemented in the industrial sector as a means of achieving energy efficiency. Due to lack of verifiable data, some of the typical measures have been listed below without specific techno-commercial calculations. Similar calculations performed for the industrial sector in Trichy and Coimbatore provides the impetus for undertaking energy efficiency measures in the industrial sector in Tirunelveli city.

- Replacement of incandescent lamps with CFL
- Replacement of T8/T12 tube lights with T5 tube lights
- Replacement of conventional ceiling fans with star rated ceiling fans
- Replacement of conventional ACs with star rated ACs

Introduction of these measures depends on the actual number of conventional equipments in use and the initial targets for replacement with energy efficient equipments.

### 6.4.14 EE Strategy for Municipal Sector

Municipal services annually incur huge expenditures on electricity consumption to cater to the local public services. Hence energy efficiency has become crucial for municipal organizations in India, owing to the growing city needs. The Bureau of Energy Efficiency in India has already come out with the Manual for development of Municipal Energy Efficiency Projects. Energy conservation drives in the municipal corporations and councils will become an exemplary initiative for similar activities in eth city. As a high visibility and administration centre Municipal bodies across India should go ahead in implementing the strategies and replicating the success stories.

### **EE measures in Street Lighting**

Street lighting is one of the major sources of energy consumption in municipal area. In Tirunelveli city, 40 W tube lights, 150 watt and 250 watt HPSV are mostly used as streetlights in different wards of within the jurisdiction of the Corporation.

### (i) Replacement of 150 watt HPSV with 100 watt induction lamps

150 watts high pressure sodium vapor lamps are frequently used in street lighting fixture in municipal area. They can be replaced with more energy efficient induction laps available in the Indian market today. A 100% target to replace 3414 number of 150W HPSV lamps with 100 watt induction lamps is taken for Tirunelveli city, to provide the techno-economics of implementing the replacement and bringing about energy savings.

| Particulars                                                  |        | Unit   |
|--------------------------------------------------------------|--------|--------|
| Total number of 150 watt HPSV                                | 3414   | Nos.   |
| Target to replace 150 watt HPSV with 100 watt induction lamp | 100%   |        |
| Total number of 100 watt induction lamp needed               | 3414   | Nos.   |
| Indicative cost of installation                              | 717    | Lakh   |
| Energy saved by replacing 150 watt HPSV with 100 watt        |        |        |
| induction lamp                                               | 747666 | kWh    |
| Cost of electricity savings                                  | 37     | Lakh   |
| Payback period                                               | 19.18  | years  |
| Emission reduction per year                                  | 606    | Tonnes |

 Table 6.57: Replacement of 150 watt HPSV with 100 watt induction lamps

### (ii) Replacement of 250 watt HPSV with 200 watt induction lamps

There are about 2824 number of 250 watt HPSV lamps lights used for street illumination in Tirunelveli. A replacement target of 100% is proposed with 200 watt induction lamps to improve the efficiency of the street lighting systems. Following table indicates the techno-economic analysis and energy saving such a replacement accompanies.

 Table 6.58: Replacement of 250 watt HPSV with 200 watt induction lamps

| Particulars                                     |      | Unit |
|-------------------------------------------------|------|------|
| Total number of 250 watt HPSV                   | 2824 | Nos. |
| Target to replace HPSV lamp with Induction Lamp | 100% |      |
| Total number of 200 watt Induction Lamp needed  | 2824 | Nos. |

| Particulars                                           |        | Unit   |
|-------------------------------------------------------|--------|--------|
| Indicative cost of installation                       | 716    | Lakh   |
| Energy saved by replacing 250 watt HPSV with 200 watt |        |        |
| Induction Lamp                                        | 618456 | kWh    |
| Cost of electricity savings                           | 31     | Lakh   |
| Payback period                                        | 23.15  | years  |
| Emission reduction per year                           | 501    | Tonnes |

### (iii) Replacement of 40 watt tube lights with 25 W LED lamps

There are 12231 number of 40 watts tube lights currently under use within different wards of the Tirunelveli Corporation area. A replacement target of 100% is proposed with 25 W LED lamps to improve the efficiency of the street lighting systems. Following table indicates the techno-economic analysis and energy saving such a replacement accompanies.

Table 6.59: Replacement of 40 watt tube lights with 25 watt LED lamps

| Particulars                                          |         | Unit   |
|------------------------------------------------------|---------|--------|
| Total number of 40 W tube lights                     | 12231   | Nos.   |
| Target to replace 40 W tube lights by 25 W LED lamps | 1       |        |
| Total number of 25 watt LED lamp needed              | 22925   | Nos.   |
| Indicative cost of installation                      | 4856    | Lakh   |
| Cost savings in lower replacement costs in 25 W LED  | 282     | Lakh   |
| Energy saved                                         | 1380658 | kWh    |
| Cost of electricity savings                          | 48      | Lakh   |
| Total cost savings                                   | 330     | Lakh   |
| Payback period                                       | 14.70   | years  |
| Emission reduction per year                          | 45.94   | Tonnes |

### (iv) Sensors for automatic on/off of street lights

Automatic street lights ensure that energy is not wasted by lights turned on during day time. Many streetlights in India face this predicament due to faulty manually controlled street lights. Manual control involves labor costs, energy wastes and poor efficiency; hence Municipal street lights should hasten the process of installing automatic sensors. Solar sensors are the new and upcoming products in the market today and should be applied by municipalities for higher efficiency in the operation and maintenance of municipal street lights. The following scheme of power saver application has been recommended for street lights in Tirunelveli city that aren't undergoing any replacement as suggested in the previous sections:

Table 6.60: Application of 20KVA power saver packs 400W HPSV, 400W and 250W MHL and 250W CFLs

| Particulars                | HPSV Lamps               |        | MHL    | CFLs  |        |
|----------------------------|--------------------------|--------|--------|-------|--------|
| Wattage                    | 400 W (High<br>mast SVL) | 70 W   | 400 W  | 250 W | 250 W  |
| Total no. of street lights | 23                       | 883    | 418    | 71    | 616    |
| Wattage (kW)               | 400                      | 70     | 400    | 250   | 250    |
| Load (KW)                  | 9                        | 62     | 167    | 18    | 154    |
| Electricity Consumption    |                          |        |        |       |        |
| (kWh)                      | 36938                    | 248167 | 671308 | 71266 | 618310 |
| No of 25 KVA power         | 0.46                     | 3.09   | 8.36   | 0.89  | 7.70   |

| Particulars                | HPSV La                  | mps      | MHL      | Fittings | CFLs     |
|----------------------------|--------------------------|----------|----------|----------|----------|
| Wattage                    | 400 W (High<br>mast SVL) | 70 W     | 400 W    | 250 W    | 250 W    |
| Saver Required             |                          |          |          |          |          |
| Cost of each 20 KVA        |                          |          |          |          |          |
| power saver is INR         |                          |          |          |          |          |
| 85000                      | 39100                    | 262692.5 | 710600   | 75437.5  | 654500   |
| Energy Saved               | 11081.4                  | 74450.2  | 201392.4 | 21379.9  | 185493   |
| Cost of Energy Saved       |                          |          |          |          |          |
| (INR)                      | 38784.9                  | 260575.5 | 704873.4 | 74829.56 | 649225.5 |
| Payback Period             | 1.01                     | 1.01     | 1.01     | 1.01     | 1.01     |
| <b>Emissions Saved (in</b> |                          |          |          |          |          |
| tonnes)                    | 8.98                     | 60.30    | 163.13   | 17.32    | 150.25   |

### (v) Energy Efficiency Measures in Water Pumping

### Proper pump-system design (efficient Pump, pumps heads with system heads)

Proper water pumping design can bring about lots of energy savings in the running and maintenance cost of water pump systems. Careful designing is required to assess the volume of water to be pumped and the height it needs to be raised to. Fluid piping software can be utilized for designing water pumps in Municipal bodies. A 20% saving is assumed for design based energy efficiency of water pumping systems. The techno-economics given below for this initiative is based on this assumption.

Table 6.61: Proper pump-system design (efficient Pump, pumps heads with system heads)

| Standard/Recommended Condition     | Value   |
|------------------------------------|---------|
| Annual Energy Consumption in MU    | 12.32   |
| Annual Energy Cost in Rs. (lacs)   | 431.2   |
| Saving %                           | 20%     |
| Total Annual Saving in MU          | 2.464   |
| Annual Saving in Rs. (lacs)        | 86.24   |
| eCO <sub>2</sub> (Tonne) Reduction | 1995.84 |

### Installation of variable speed drivers

Dimension and adjustment losses are two of the major energy loss sources in pumping processes. Adjusting pump speed or using Variable Speed Driver to adjust speed is one way to decreasing both the aforementioned losses in pumping processes. An assumption of 5% savings is taken to provide the financial and technical details of installing variable speed drivers in municipal water pumping systems in Tirunelveli City.

| Table 6.62: Variable Speed Drivers |        |
|------------------------------------|--------|
| Standard/Recommended Condition     | Value  |
| Annual Energy Consumption in MU    | 12.32  |
| Annual Energy Cost in Rs. (lacs)   | 431.2  |
| Saving %                           | 5%     |
| Total Annual Saving in MU          | 0.616  |
| Annual Saving in Rs. (lacs)        | 21.56  |
| eCO <sub>2</sub> (Tonne) Reduction | 498.96 |

### Table 6.62: Variable Speed Drivers

### Power saver installation in pump house

An assumption of 15% savings is taken as the energy saving potential for installing power saver in municipal pump houses. The following techno-economics is based on this assumption.

|                                  | Value   |
|----------------------------------|---------|
| Annual Energy Consumption in MU  | 12.32   |
| Annual Energy Cost in Rs. (lacs) | 431.2   |
| Saving %                         | 15%     |
| Total Annual Saving in MU        | 1.848   |
| Annual Saving in Rs. (lacs)      | 64.68   |
| eCO2 (Tonne) Reduction           | 1496.88 |

### Table 6.63: Power saver installation in pump house

### (vi) Energy Efficiency Measures in STP

Pumping systems are utilized in water treatment plants of the municipal corporations whose energy efficiency can also be determined through efficient system design. A considerable amount of energy can be saved taking suitable measures in STP. TMC should initiate energy audit in all its utility services and installations to take a stalk of the energy consumption and potential savings.

### Proper pump-system design (efficient pump, pumps heads with system heads)

The same principle of speed adjustment to reduce adjustment and dimension energy losses in water pumping process applies in water treatment plants. An assumption of 5% saving is taken into consideration for giving the techno-economics of installing variable

## Table 6.64: Proper pump-system design (efficient pump, pumps heads with system heads)

| Standard/Recommended Condition   | Value  |
|----------------------------------|--------|
| Annual Energy Consumption in MU  | 4.07   |
| Annual Energy Cost in Rs. (lacs) | 142.45 |
| Saving %                         | 5%     |
| Total Annual Saving in MU        | 0.20   |
| Annual Saving in Rs. (lacs)      | 7.12   |
| eCO2 (Tonne) Reduction           | 165    |

### Installation of variable speed drivers

Installation of variable speed drivers for municipal pumps could save at least 5% energy resulting total savings of 0.20MU per year reducing 165 tonnes of GHG emission.

| Table 6.65: Variable Speed Drivers |        |  |
|------------------------------------|--------|--|
| Standard/Recommended Condition     | Value  |  |
| Annual Energy Consumption in MU    | 4.07   |  |
| Annual Energy Cost in Rs. (lacs)   | 142.45 |  |
| Saving %                           | 5%     |  |
| Total Annual Saving in MU          | 0.20   |  |
| Annual Saving in Rs. (lacs)        | 7.12   |  |
| eCO2 (Tonne) Reduction             | 165    |  |

### Table 6.65: Variable Speed Drivers

### Power saver installation in pump house

An assumption of 15% savings has been taken to calculate the energy saving potential and financial implications of installing power saver in pump houses.

| Table 0.00. Fower saver instantion in pump nouse |        |  |
|--------------------------------------------------|--------|--|
| Standard/Recommended Condition                   | Value  |  |
| Annual Energy Consumption in MU                  | 4.07   |  |
| Annual Energy Cost in Rs. (lacs)                 | 142.45 |  |
| Saving %                                         | 15%    |  |
| Total Annual Saving in MU                        | 0.6105 |  |
| Annual Saving in Rs. (lacs)                      | 21.37  |  |
| eCO2 (Tonne) Reduction                           | 495    |  |

### Table 6.66: Power saver installation in pump house

### Summary of EE Strategy for Municipal Sector

The energy savings potential through energy efficiency measures in municipal sector is 9.8 MU per year. The corresponding reduction in emissions is about 6863 tonnes.

| EE Measures                                  | Investment | Electricity | Emissions         |
|----------------------------------------------|------------|-------------|-------------------|
|                                              | (Lakh)     | Saved (MU)  | Saved<br>(Toppes) |
| Indicative cost of replacing 250 watt HPSV   |            |             | (Tomics)          |
| with 200 watt induction lamps                | 716        | 0.62        | 501               |
| Indicative cost of replacing 150/125 watt    |            |             |                   |
| HPSV with 100 watt induction lamps           | 717        | 0.75        | 606               |
| Indicative cost of replacing 40W tube lights |            |             |                   |
| with 25 W LED lamps                          | 4856       | 1.38        | 46                |
| Proper pump system design, installation of   |            |             |                   |
| variable speed drivers and power savers in   |            |             |                   |
| existing water supply facility               |            | 4.93        | 3991.68           |
| Proper pump system design, installation of   |            |             |                   |
| variable speed drivers and power savers in   |            |             |                   |
| existing sewage system facility              |            | 1.63        | 1319              |
| Use of power saver in street lighting        | 17.42      | 0.49        | 400               |
| Total                                        |            | 9.80        | 6862.84           |

### 6.4.15 Solid Waste Management Interventions

### Waste to Energy Potential in Tirunelveli

Estimated solid waste generated in Tirunelveli city is 120 MT/day. Potential energy recovery from MSW through different treatment methods could be estimated from its calorific value and organic fraction etc. Since relevant details are not available for Tirunelveli, widely used estimates for municipal solid waste in India have been used for a preliminary assessment. However, waste to energy potential for the city is considered as an indicative assessment and not included in the strategy to achieve energy savings goal under solar city programme.

### (i) Waste to Energy Potential through thermo-chemical conversion

In thermo-chemical conversion all of the organic matter, biodegradable as well as nonbiodegradable, contributes to the energy output. Total electrical energy generation potential is estimated to be 3.5 MWe and savings per year with 70% PLF is estimated as 21.39 MU.

| Particulars                                            |        | Unit    |
|--------------------------------------------------------|--------|---------|
| Total waste generated                                  | 120    | Tonnes  |
| Net Calorific Value (conservative estimate)            | 2400   | kcal/kg |
| Energy recovery potential (NCV x W x 1000/860)         | 334884 | kWh     |
| Power generation potential                             | 13953  | kW      |
| Conversion efficiency                                  | 25%    |         |
| Net Power generation potential                         | 3.49   | MWe     |
| Plant Load Factor                                      | 70%    |         |
| Net electrical energy savings potential @70% PLF       | 21.39  | MU      |
| Emission reduction per year                            | 17326  | Tonnes  |
| Total Investment                                       | 2442   | Lakh    |
| MNRE subsidy @ 50% subject to maximum of Rs.300.00 per | 1047   | Lakh    |
| MW                                                     |        |         |
| State/City/Private Power Producer                      | 1395   | Lakh    |
| Cost savings                                           | 963    | Lakh    |
| Payback period                                         | 1.45   | Years   |

Table 6.68: Waste to Energy through thermo-chemical conversion

### (ii) Waste to Energy Potential through bio-methanation

In bio-chemical conversion, only the biodegradable fraction of the organic matter can contribute to the energy output. It is estimated that a 1.26 MWe electrical energy generation is possible from this process which could save about 7.7 MU of energy every year assuming a 70% of PLF.

Table 6.69: Waste to Energy through bio-methanation

| Particulars                                      |           | Unit      |
|--------------------------------------------------|-----------|-----------|
| Total waste generated                            | 120       | Tonnes    |
| Total biodegradable volatile solid (VS)          | 30%       |           |
| Typical digestor efficiency                      | 60%       |           |
| Typical bio-gas yield (m3 / kg. of VS destroyed) | 0.80      | Cu M/kg   |
| Biogas yield                                     | 17280     | Cu M      |
| Calorific Value of bio-gas                       | 5000.00   | kcal/Cu M |
| Energy recovery potential                        | 100465.12 | kWh       |
| Power generation potential                       | 4186      | kW        |
| Conversion efficiency                            | 30%       |           |
| Net Power generation potential                   | 1.26      | MWe       |
| Plant Load Factor                                | 70%       |           |
| Net electrical energy savings potential          | 7.70      | MU        |
| Emission reduction per year                      | 6238      | Tonnes    |
| Total Investment                                 | 753       | Lakh      |
| MNRE subsidy @ R.200.00 lakh per MW              | 251       | Lakh      |
| State/City/Private Power Producer                | 502       | Lakh      |
| Cost savings                                     | 347       | Lakh      |
| Payback period                                   | 1.45      | Years     |

### (iii) Waste to Energy Potential from Sewage Treatment Plant

Tirunelveli city currently has no STP and the possibility of waste to energy generation is therefore curtailed. The city has a vast waste to energy potential and it is suggested that an STP is established to tap into this. For this purpose, following box item is presented as a case study indicating the salient features of the STP that was established in Surat.

### **Energy generation from Liquid Waste in Surat**

- Total project cost for 4 STP units: Rs. 212.4 million
- MNRE financial support: Rs. 69.2 million
- Energy generated since commencement of operation until May 2009: 16.45 million units
- Amount saved since commencement of operation until May 2009: Rs 71.80 million
- Reduction in Carbon emissions since: 9990 MT/year

Thermal energy conservation strategies and measures will help regulate energy use and reuse eventually providing energy conservation especially in energy intensive activities and processes. While the below mentioned measures can be generally applied to any industry type, more specific measure can be developed after specific study of industry processes and equipment usage.

| Measures | Description                                                                              | Expected impact                                                                                                               |
|----------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| General  | <ul> <li>Exercise regular energy<br/>audits</li> <li>Pre-heat oil for proper</li> </ul>  | <ul> <li>Plugging of leaks saves almost 2000 liters<br/>of oil per year</li> <li>Proper combustion of oil improves</li> </ul> |
|          | combustion. Make sure<br>that there are no leaks and                                     | <ul> <li>combustion efficiency</li> <li>Low pressure burners save 15% of oil in</li> </ul>                                    |
|          | <ul><li>filter oil</li><li>Use low pressure burners</li></ul>                            | furnaces                                                                                                                      |
| Furnace  | • Control excess air in the furnace                                                      | • Excess air control in the furnace helps reduce fuel consumption that amounts to a                                           |
|          | • Undertake proper design of lids and insulation of the furnace                          | <ul> <li>saving of Rs. 3 Lakh/year</li> <li>Heat loss reduction through insulation improves fuel efficiency</li> </ul>        |
|          | • Avoid escape of heat through openings or holes in the furnace body                     | • Plugging of furnace holes and gaps results<br>in 10%-15% reduction in losses<br>respectively                                |
| Boiler   | <ul> <li>Removal of soot deposits</li> <li>Recover heat from steam condensate</li> </ul> | • Soot deposits removal can avoid 2.5% increase in fuel consumption that occurs without such removal                          |
|          | <ul> <li>Administer proper boiler<br/>control</li> <li>Use tracted water in</li> </ul>   | • Heat from steam condensate helps save<br>1% of fuel per 6°C rise in boiler<br>temperature                                   |
|          | Ose freated water in<br>boilers     Ausid assesses of                                    | <ul> <li>Treated water forms less or no scales on<br/>the boiler interior which usually causes</li> </ul>                     |
|          | steam/heat                                                                               | reduction of 5%-8% in fuel consumption                                                                                        |
|          |                                                                                          | • Steam loss causes huge losses annually<br>which can be avoided by plugging holes in<br>the boiler system                    |

**Table 6.70: Thermal Energy Conservation strategies** 

| Measures                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                | Expected impact                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DG sets                                  | <ul> <li>Regularly service injection<br/>pump, nozzle, filters</li> <li>Monitor fuel consumption<br/>per kWh of electricity</li> </ul>                                                                                                                                                                                                                                                                                                     | <ul> <li>Faulty injection pump, nozzle and blocked<br/>filters can cause reduction is fuel usage<br/>efficiency by 2gm/kWh and can be saved<br/>by regular checks</li> <li>A rising trend of fuel consumption against<br/>per kWh of electricity indicates poor<br/>system performance which needs above<br/>mentioned system checks</li> </ul>                                                                                                  |
| Compressed<br>air                        | <ul> <li>This is a highly energy intensive process and should only be sued for justifiable processes</li> <li>Ensure low inlet air temperature and low discharge pressure</li> <li>Ensure no leaks in the pipe system leading to or from the compressor</li> <li>Monitor compressor output against per kWh of electricity</li> </ul>                                                                                                       | <ul> <li>Avoid use of compressed air for cleaning</li> <li>Control of inlet air temperature and discharge pressure saved fuel by up to 1% and 5% respectively.</li> <li>Leaks in pipes causes pressure loss and hence system inefficiency</li> <li>System inefficiency tends to fail overtime and monitoring helps take corrective action</li> </ul>                                                                                             |
| Refrigeration<br>and Air<br>Conditioning | <ul> <li>External measures like air curtains, automatic door closures, double glazed windows, polyester sun films etc.</li> <li>Maintain condensers for proper hear exchange</li> <li>Proper utilization of air conditioned/refrigerated space</li> <li>Use of waste heat from steam and flue gasses to replace gas compression system by absorption chilling system</li> <li>Monitor specific power consumption of compressors</li> </ul> | <ul> <li>External measures reduce air conditioning/refrigeration load of buildings</li> <li>Evaporated temperature heat loss causes rise of specific power consumption in condensers by 15%</li> <li>Regulation in cooling load within the cooling space improves efficiency of refrigeration</li> <li>Use of continuous duty compressor during active duty and use of others on standby improves life and reduced energy consumption</li> </ul> |
| Pumps                                    | <ul> <li>Select pump based on expected water flow</li> <li>Preferably use variable valves</li> <li>Avoid belt lag that connect the pump and its drives</li> <li>Use synthetic flat belts instead of conventional V belts</li> </ul>                                                                                                                                                                                                        | <ul> <li>Pumps operate at 85% efficiency at rated flow and 65% at half that flow</li> <li>Connector belt lag causes 10%-15% loss in transmission efficiency</li> <li>Synthetic belts improve 5%-10% of energy</li> </ul>                                                                                                                                                                                                                         |

 $Source:\ http://www.energy conservation.co.in/energy-conservation-tips.html$ 

### 7. Conclusion

About 70% of the world's population is predicted to reside in cities and urban centres by 2030. With the annual growth rate of Indian population at 1.43%, consistency of economic development and the achievement of climate change resilience at city levels have become two major areas of concern that demand increasing attention from policy makers in the country. The idea of a low carbon development economy is gaining momentum in a number of cities across the world. In India, dealing with climate change vulnerability requires an understanding of the city level socio-economic idiosyncrasies besides energy and resource consumption patterns. This report hopes to underscore these aspects of three south Indian cities; Coimbatore, Tiruchirapalli and Tirunelveli while taking into account their specific energy and emissions profiles and streamlining proposed action plans and related targets to achieve low carbon development.

The three project cities in this report correspond to different levels of economic development and each of these cities face climate related vulnerabilities. With individual social, economic and cultural identities, the project cities have been showcased through city profiles that describe these identities and energy and emission profiles that quantify the activities within these cities to address carbon emissions abatement through action plans that fit with the city profiles.

With solutions ranging from retrofitting lighting in government buildings to process heat conservation and use of solar home based systems, the techno-economic analysis combines leveraging national and sub-national subsidies and customized targets to identify measures that can be sustainably applied by the local governments. The measures presented for each project city are evaluated for its carbon abatement potential and implementation feasibility through consultative meeting with city officials. Wherever possible, indicative and generic measures provide the general framework for achievement of low carbon development in the project cities.





### **British High Commission**

The British High Commission in India supports projects combating climate change across the country through various funding streams including the Prosperity Fund to promote Low Carbon High Growth initiatives. The Fund will focus on promoting sustainable global growth, consistent with the UK's development objectives of promoting sustainable development and improving welfare.

# I.C.L.E.I

Governments for Sustainability

### ICLEI - Local Governments for Sustainability - South Asia

ICLEI - Local Governments for Sustainability - South Asia is a non-profit making organisation operating from New Delhi, India. It began its activities in April 2005 and is presently supporting over 40 South Asian cities. ICLEI South Asia supports environmental and other sustainability initiatives at the local level by working with city governments as well as with state, national and international governmental bodies to build appropriate local environment initiatives and policies.

ICLEI - Local Governments for Sustainability - South Asia Ground Floor, NSIC-STP Complex NSIC Bhawan, Okhla Industrial Estate, New Delhi - 110020, India Tel: +91-11-4106 7220; Fax: +91-11-4106 7221