

Wetlands and LULUCF Carbon Emission Inventories

Louis Verchot

THINKING beyond the canopy

Doha, 2012

The 2006 revision to the IPCC guidelines covered a limited set of activities on peat

Intergovernmental Panel on Climate Change

2006 IPCC Guidelines for National Greenhouse Gas Inventories

Volume 4

Agriculture, Forestry and Other Land Use

Edited by Simon Eggleston, Leandro Buendia, Kyoko Miwa, Todd Ngara and Kiyoto Tanabe

- Peatlands cleared and drained for production of peat for energy, horticultural and other uses
- Reservoirs or impoundments, for energy production, irrigation, navigation, or recreation

IPCC National Greenhouse Gas Inventories Programme

Blue Carbon Sinks include:

Seagrass Meadows

Tropical peatlands are being converted to plantation crops – oil palm, Acacia for pulp At current rates PSF could disappear by ~2030

Mangroves are disappearing rapidly – deforestation rate ~6%

C stocks as a function of the distance from the edge

Distance from seaward edge (m)

In the tropics, deforestation C emissions in PSF can be very large compared to other forest types

Objectives

Quantifying <u>peat</u> emissions of CO_2 CH₄ and N₂O

Dominant land-use categories

- Virgin peat swamp forest
- Degraded forest (burned, drained, logged)
- Croplands & shrublands
- Rice fields
- Oil palm plantations
- Acacia plantations
- Sago palm plantations

Soil net CO₂ fluxes from LUC Stock difference approach

Stock difference approach

Measurements soil C stocks (0-30 cm, IPCC guideline 2006) before and after land-use change

Soil C stock loss/gain = Stocks _{after LUC} – Stocks _{before LUC}

Limit of the approach for peat soils

No decrease with depth in soil bulk density and C content as in mineral soils

Soil C stock changes take place at depth > 30 cm

⇒ Soil C stocks need to measured over the full depth of the peat deposit

Soil net CO₂ fluxes from LUC Stock difference approach

- Difficulties of the approach
- Dome shape of peat and lack of peatland maps

 \Rightarrow Difficulties in selecting the before and after LUC locations

- Peat depth up to 20 m \Rightarrow compaction, limited number profiles
- Presence logs and water-logged conditions
 - \Rightarrow Difficulties in measuring bulk density

Soil net CO₂ fluxes from LUC Flux change approach

Gain – loss approach

Measurements balance soil C fluxes before and after land-use change

Net C-CO₂ balance = C outputs Rh+land clearing fires - C inputs Litterfall+Roots

Soil net C-CO₂ emis/remov = Net C-CO_{2 after LUC} – Net C-CO_{2 before LUC}

Soil net C-CO₂ emission/removal

	Mg C ha⁻¹ y⁻¹								
LU	Soil C inputs			Soil C outputs			Net CO ₂		
	Litterfall	Roots	Total	Sh	Fires	Total			
F	7.4	1.5	8.9	6.9	-	6.9	-2.1 ± 1.8		
DegF	4.3	0.8	5.1	9.0	-	9.0	3.9 ± 2.6		
C&S	2.4	1.9	4.2	13.8	5.7	19.5	15.3 ± 2.5		
R	1.0	1.5	2.5	7.3	5.7	13.0	10.5 ± 2.9		
OP	1.5	3.6	5.0	11.5	5.7	17.2	12.2 ± 2.8		
Α	4.9	2.1	7.0	23.2	5.7	28.9	21.9 ± 3.8		
S	1.5	3.6	5.0	2.9	5.7	8.7	3.6 ± 2.0		

Positive values indicate net C-CO₂ emissions to the atmosphere (Murdiyarso et al., 2009; Hergoualc'h & Verchot, 2011; Hergoualc'h & Verchot, in prep.)

Non CO₂ GHG emission/removal

LU	CH₄ (kg C ha⁻¹ y⁻¹)	N₂O (kg N ha⁻¹ y⁻¹)
F	28.6 ± 9.7	2.7 ± 1.9
DegF	3.7 ± 1.9	2.4 ± 1.1
C&S	5.2 ± 5.1	5.0 ± 2.7
R	107.6 ± 60.2	0.4 ± 0.5
OP	-0.2	1.2
Α	2.0 ± 2.7	-
S	19.7 ± 14.3	3.3

 N₂O emissions from fertilizer addition or high N inputs from with N-fixing species (e.g. *Acacia*) accounted using the IPCC Ef of 1% of total N inputs

20m

Positive values indicate emissions to the atmosphere (Hergoualc'h & Verchot, 2011, 212, in prep.)

Net GHG emission/removal

	LU	Net GHG (Mg CO ₂ -eq ha ⁻¹ y ⁻¹)	% Net CO ₂ to Net GHG	
	F	-5.3 ± 6.8	142	
	DegF	15.6 ± 9.5	92	
	C&S	58.4 ± 9.2	96	
	R	42.1 ± 10.8	91	
	OP	45.2 ± 10.4	99	
	Α	80.5 ± 13.8	100	
	S	15.4 ± 8.0	86	

• Net GHG in OP = 46 Mg CO₂-eq ha⁻¹ y⁻¹ if 150 kg N ha⁻¹ y⁻¹ applied

20m

Positive values indicate emissions to the atmosphere (Hergoualc'h & Verchot, 2011, 212, in prep.)

Conclusions

Net GHG losses mostly in the form of CO₂

But other non CO₂ GHG shouldn't be ignored (CH₄ flooded LU e.g. rice, N₂O fertilized LU e.g. OP)

Very large GHG losses from LUC

Forest conversion to oil palm plantation: 1263 Mg CO_2 -eq ha⁻¹ 25 years Forest conversion to Acacia plantation: 2147 Mg CO_2 -eq ha⁻¹ 25 years

⇒ IPCC will provide new estimates of emission factors in the special report on wetlands

⇒SOD will be available for expert and government review in March 2013

Acknowledgement: Inputs to this presentation from Boone Kaufman, Kristell Hergoualc'h and Daniel Murdiyarso

Thank you

www.cifor.cgiar.org

CIFOR advances human well-being, environmental conservation, and equity by conducting research to inform policies and practices that affect forests in developing countries.

THINKING beyond the canopy