Mitigating Climate Change: IAEA assistance to interested Member States

H-Holger Rogner Planning & Economic Studies Section (PESS) Department of Nuclear Energy

Three take-away messages

- **Ø** Nuclear power is good for the climate
- Ø Nuclear power is not a quick-fix mitigation option
- Ø Nuclear power can make a substantial mitigation contribution in any serious longterm mitigation strategy

Full Chain Greenhouse Gas Emissions, g C / kWh

Full Chain Greenhouse Gas Emissions, g C / kWh

Nuclear power is good for the climate

Nuclear power: Very low lifecycle GHG emissions make the technology a potent climate change mitigation option

() IAEA

Global CO2 emissions from electricity generation & emissions avoided by hydro, nuclear & renewables

Range of carbon dioxide reduction costs for electricity technologies

Mitigation potential of selected electricity generation technologies in different cost ranges

Wastes in Fuel Preparation and Plant Operation

Externalities of different electricity generating options

No such thing as a perfect technology

- Ø There is no technology without risks and interaction with the environment.
- **Ø** Do not discuss a particular technology in isolation.
- Compare a particular technology with alternatives in a system context and on a life cycle (LCA) basis.

One size does not fit all

Ø Countries differ with respect to

- § energy demand growth
- **§** alternatives
- **§** financing options
- **§** weighing/preferences
 - Ø accident risks (nuclear, mining, oil spills, LNG...), cheap electricity, air pollution, jobs, import dependence, climate change
- Ø All countries use a mix. All are different.
- Ø Nuclear power per se is not "the solution" to the world's energy problems, climate change and energy security

Ø It surely can be an integral part of the solution!

IAEA assistance to interested Member States

IAEA responds to Member State requests !

- Ø Energy planning and capacity building
 - § Mitigation options throughout the energy system
 - § CDM, JI and emission trading
- Ø Infrastructure planning for starting nuclear power programmes

Why is IAEA involved in system energy planning?

- Ø Many developing countries lack the capability and/or capacity for integrated resource planning
- Ø Sequential stop-gap measures instead of longterm development planning
- Only UN organization which is promoting energy planning and assists Member States since the mid-1970s

Objective is to build energy planning capacity in developing countries

Why energy system planning?

- **Ø** A prerequisite for informed decision making
- **Ø** Supply and demand side options
- **Ø** Financial viability and capability
- Ø Social/public/political commitment & acceptance
- Ø Economic development & environmental protection including mitigating climate change
- Ø Regional approaches, infrastructure sharing & energy trade (interconnections)
- **O** Testing effectiveness of policy measures

Capacity building: Energy for Development

- Ø Transfer planning models tailored to developing countries
- Ø Transfer data on technologies, resources and economics
- Ø Train local experts
- Ø Jointly analyze national options
- Ø Help establish continuing local expertise

IAEA Analytical Tools for Sustainable Energy Development

IAEA energy analysis models

- Ø Model for the Analysis of Energy Demand
- Ø Model for Energy Supply System Alternatives and their General Environmental impacts
- Ø Financial Analysis of Electric Sector Expansion Plans
- Ø Simplified Approach for Estimating Impacts of Electricity Generation

MESSAGE

Energy Planning

Outputs

 A national plan towards sustainable energy development

A tool for benchmarking status, defining strategies for, and monitoring progress towards, a sustainable energy future

Assessing Policy Options for Increasing the Use of Renewable Energy for Sustainable Development: Modelling Energy Scenarios for Ghana

Copy Preprint (

UN-Energy

A UN-ENERGY Demonstration Study

conducted by

- **Department of Economic and Social** Affairs (DESA)
- Food and Agriculture Organization (FAO) •
- **International Atomic Energy Agency** (IAEA)
- **United Nations Environment Programme** • (UNEP)
- **United Nations Industrial Development** ٠ **Organization (UNIDO)**

with assistance form the Ghana **Energy Commission**

Electricity generation: Base case

Electricity generation: CDM at \$25/tCO₂

Electricity generation: CDM at \$25/tCO₂ with nuclear as CDM option

Impact of different CDM schemes

CO2 emissions from electricity generation

Energy Planning – An ongoing process

- Ø No analysis is perfect
- Ø Many more "what if" questions need to be explored
- **Ø** New information
- Ø Previously plausible assumptions no longer stand the test of time
- **Ø** Energy planning never ends.....

Energy planning and nuclear power

If nuclear power is integral part of the optimal supply mix under several potential futures (scenarios), the next logic step concerns:

Understanding the issues involved with the implementation of a nuclear power programme

Unlike many large industrial projects, nuclear power has certain unique characteristics

- § Risk of severe accidents and possible target of sabotage, i.e. concerns inherent with nuclear material and radiation
- **§** Public awareness of nuclear risks seems to outweigh its awareness of the benefits, e.g. climate change
- **§** Importance of public trust
- **§** Safety, security and proliferation issues
- § Start up phase is significant in length and effort, some 10-15 years before the shovel hits the ground
- **§** Requires a "100 year +" commitment
- **§** Long term waste issues

Issues: Expected preparedness and competency in key areas of

- **1.** National position
- **2. Legislative framework**
- **3. Nuclear safety**
- 4. Regulatory framework
- 5. Human Resource Development
- 6. Safeguards
- 7. Security and physical protection
- 8. Management
- 9. Financing

10. Stakeholder involvement

- **11. Emergency planning**
- **12.** Radiation protection
- **13.** Nuclear fuel cycle
- **14. Nuclear waste**
- **15.** Environmental protection
- 16. Site and supporting facilities
- **17. Industrial involvement**
- **18.** Procurement
- **19. Electric grid**

ISSUES	MILE- STONE 1			MILE- STONE 2			MILE- STONE 3			
1. National position										
2. Legislative framework										
3. Nuclear safety										
4. Regulatory framework										
5. Human resource development										
6. Safeguards										
7. Security and physical protection		NS			SN			NS		
8. Management		UIO			LIO			OL		
9. Financing		A C			AC			C		
10. Stakeholder involvement					7			. ~4		
11. Emergency planning										
12. Radiation protection										
13. Nuclear fuel cycle]	
14. Nuclear waste										
19. Electric grid										

Nuclear Safety Infrastructure

Nuclear Safety is integral part of all aspects of a nuclear power programme

- **§** Legal Framework, regulators, operators
- **§** Technical competence, skills and attitudes
- **§** Leadership and management, and safety culture
- **§** Financial strength and stability for the entire programme
- § Life cycle: pre-operation, operation, decommissioning and waste management
- **§** Openness and transparency
- **§** Emergency preparedness and response capabilities
- § International connectivity

Reference: Considerations Document - GOV/INF/2007/2

...atoms for peace.

Economics – Nuclear power

Advantages

- Ø Nuclear power plants are cheap to operate
- Ø Stable & predictable generating costs
- Ø Long life time
- Ø Supply security (insurance premium)
- Ø Low external costs (so far no credit applied)

But...

- Ø High upfront capital costs can be difficult to finance
- Ø Sensitive to interest rates
- Ø Long lead times (planning, construction, etc)
- **Ø** Long payback periods
- **Ø** Regulatory/policy risks
- Ø Market risks

Overnight investment cost ranges for 1 000 MW generating capacity

Overnight investment cost ranges for typical unit sizes

But what matters really are the generating cost ranges (capital, O&M, fuel)

Range of levelized generating costs of new electricity generating capacities

Cost structures of different generating options

Impact of a doubling of resource prices

One size does not fit all

Ø Countries differ with respect to

- § energy demand growth
- **§** alternatives
- **§** financing options including subsidies
- **§** weighing/preferences
 - accident risks (nuclear, mining, oil spills, LNG...), cheap electricity, air pollution, jobs, import dependence, climate change
- **Ø** All countries use a mix. All are different.
- Ø Nuclear power per se is not "the solution" to the world's energy problems, climate change and energy security

It surely can be an integral part of the solution!
IAEA