

Risks, legal issues and public perception

Shell International E&P

Capture and transport

Risks proportional to the magnitude of potential hazard and probability that these hazards will occur

Capture: regular health, safety, environment risks in industrial operations – no fundamental challenges

Transport: comparable to or lower than risks of hydrocarbon pipelines

Geological storage

Hazards result from leakage of CO₂ from storage site to the surface and arise from three distinct causes

- Elevated gas-phase concentrations in the near-surface environment
- Effects of dissolved CO₂ on groundwater chemistry
- Effects that arise from the displacement of fluids by the injected CO₂

Leakage paths

Injected CO₂ migrates up dip maximising dissolution & residual CO₂ trapping

WMO

Geological storage

Risk management

- Careful site selection, including performance and risk assessment
- Monitoring to provide assurance that storage project is performings expected
- Effective regulatory oversight
- Implementation of remediation measures

Geological storage

With appropriate risk management in place local risk of geological storage is comparable to risks of current activities • natural gas storage, EOR, disposal of acid gas

Ocean storage

Hazards

- pH change
- Mortality of ocean organisms
 Ecosystem consequences
 Chronic effects unknown

Change of bacteria, nanobenthos and meiobenthos abundace after exposure to 20,000 and 5,000 ppm for 77-375 hrs during experiments carried out at 2000 m depth in NW Pacific

Mineral carbonation

Environmental impact similar to that of large scale surface mining operations
Mining and disposal of resulting products
Some of it may be re-used

Will physical leakage of stored CO₂ compromise CCS as a climate mitigation option?

Fraction retained in appropriately selected and managed geological reservoirs is

- very likely to exceed 99% over 100 years, and
- is likely to exceed 99% over 1,000 years.

"Likely" is a probability between 66 and 90%, "very likely" of 90 to 99%

Release of CO₂ from ocean storage would be gradual over hundreds of years

Year	Injection Depth		
	800 m	1500 m	3000 m
2100	0.78 ± 0.06	0.91 ± 0.05	0.99 ± 0.01
2200	0.50 ± 0.06	0.74 ± 0.07	0.94 ± 0.06

Fraction of CO₂ retained as simulated for 100 years of continuous injection starting in 2000

What are the legal and regulatory issues for implementing CO_2 storage?

Onshore: national regulation

• Few legal or regulatory frameworks for long-term CO₂ storage

Offshore: international treaties

- OSPAR, London Convention
- Ocean storage and sub-seabed geological storage
- Unclear whether or under what conditions CO₂ injection is compatible with international law

Public perception

• Only a handful of studies in Japan, Netherlands, US, UK

• A few percent of the general public is familiar with CCS

CCS is generally regarded as less desirable than:
 energy efficiency improvements use of non-fossil energy sources

