

Integrating Engineering, Innovation & and Policy

Professor Michael Grubb

Chair of Energy and Climate Policy, 4CMR Cambridge University

Editor-in-Chief, Climate Policy Journal, & Visiting Professor, Imperial College London

Imperial College Side Event: Innovating Climate Mitigation Technologies Post-2012, Doha, November 2012

Cambridge Centre for Climate Change Mitigation Research (4CMR)

Technology, Innovation and policy: the positive agenda

- Investment required is many trillions of dollars
- New technology is required to achieve deep emission reductions
- Innovation is required to bring down the costs
- *Markets* will be required to justify and offer returns to this investment
- Policy will be an important driver of all three

The high-level structure of energy-CO2 systems – *which end-use markets, which channels, with what resources ...*

Technology: 'For every complex problem there is an answer that is simple – and wrong' (in this case, two)

- "Technology is the answer" but technology development is a very complex process and the policy solutions are not simple:
- *Public R&D investment by governments* to develop technologies has mixed history and faces serious institutional dilemmas
 - 'picking winners' or not
 - mutual programme dependencies (the 'exit' problem)
 - cooperation vs competition
 - policy displacement
- Even where market pull forces are important, it is a long way to actual large-scale industrial innovative risk-taking, which ideally would need
 - perfect R&D markets
 - long term certainty and policy stability on environmental pricing
 - Good communication between government, research, and industry
- 'Market-led' innovation particularly difficult in context of 'public goods'

There are extensive barriers to investment that differ along the innovation chain

'For every complex problem, there is also an answer that is complex – and unuseable'

Simplified 'innovation systems map' for wind energy in the UK

Source: Foxon et al., UK Innovation Systems for New and Renewable Energy Technologies: Drivers.

Integrated perspectives: technologies have to traverse a long, expensive and risky chain of innovation to get from idea to market

UNIVERSITY OF CAMBRIDGE

Source: Foxon (2003) adapted by the author

A wide range of low carbon technology groups exist, at various stages of the innovation chain

	Basic R&D	Applied R&D	emon-stration	Commercial isation	Diffusion
Energy Supply	Solar Photo- conversion	 Fuel Cells Advanced CHP Fusion 	 Wave Ultra-high efficiency CCGT 	 Offshore Wind Biomass (Electricity) Solar PV 	 Nuclear Fission Onshore Wind Biomass (Heat)
Energy Demand	 Process Replacement 	Product Replacement	 Process Improvement 	 Product Improvement 	 Buildings Services and Fabric
Enabling	 Hydrogen Production 	 Hydrogen Distribution 	 Smart Metering 	Chemical / fuel cell electric storage	HVDC Transmission
Transport	 Fuel cell 'hypercars' 	• Ethanol (Ligno- cellulose)	• Fuel Cells	 Syngas Fuels 	 High efficiency powertrains Biodiesel Ethanol
BRE UNIVE	RSITYOF				(starch/sugars)

CAMBRIDGE

Market theory mostly blind to the innovation process – competitive forces assumed to generate innovation from the government 'no-go zone' in between R&D and diffusion

Diverse policies of market engagement and strategic deployment needed to traverse the innovation chain

Even 'market engagement' requires a mix of instruments Carbon Trust support for innovation commercialisation

Strategic challenge is to invest through the innovastion chain alongside strengthening carbon price to deliver the new industry

Two kinds of energy futures Which are we building?

Integrating Engineering, Innovation & and Policy

Professor Michael Grubb

Chair of Energy and Climate Policy, 4CMR Cambridge University

Editor-in-Chief, Climate Policy Journal, & Visiting Professor, Imperial College London

Imperial College Side Event: Innovating Climate Mitigation Technologies Post-2012, Doha, November 2012

Cambridge Centre for Climate Change Mitigation Research (4CMR)